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THE BASICS

Chapter 0

We won’t make this section of the text too long — all we really want to do here is to take
a short memory-jogging excursion through little bits and pieces you should remember
about sets and numbers. The material in this chapter will not be (directly) examined.

0.1 Ĳ Numbers

Before we do anything else, it is very important that we agree on the definitions and names
of some important collections of numbers.

• Natural numbers — These are the “whole numbers” 1,2,3,. . . that we learn first at
about the same time as we learn the alphabet. We will denote this collection of
numbers by the symbol “N”. The symbol N is written in a type of bold-face font that
we call “black-board bold” (and is definitely not the same symbol as N). You should
become used to writing a few letters in this way since it is typically used to denote
collections of important numbers. Unfortunately there is often some confusion as to
whether or not zero should be included1. In this text the natural numbers does not
include zero.

Notice that the set of natural numbers is closed under addition and multiplication.
This means that if you take any two natural numbers and add them you get another
natural number. Similarly if you take any two natural numbers and multiply them
you get another natural number. However the set is not closed under subtraction or
division; we need negative numbers and fractions to make collections of numbers
closed under subtraction and division.

Two important subsets of natural numbers are:

1 This lack of agreement comes from some debate over how “natural” zero is — “how can nothing be
something?” It was certainly not used by the ancient Greeks who really first looked at proof and num-
ber. If you are a mathematician then generally 0 is not a natural number. If you are a computer scientist
then 0 generally is.
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THE BASICS 0.1 NUMBERS

– Prime numbers — a natural number is prime when the only natural numbers
that divide it exactly are 1 and itself. Equivalently it cannot be written as the
product of two natural numbers neither of which are 1. Note that 1 is not a
prime number2.

– Composite numbers — a natural number is a composite number when it is not
prime.

Hence the number 7 is prime, but 6 = 3 ˆ 2 is composite.

• Integers — all positive and negative numbers together with the number zero. We
denote the collection of all integers by the symbol “Z”. Again, note that this is not
the same symbol as “Z”, and we must write it in the same black-board bold font.
The Z stands for the German Zahlen meaning numbers3. Note that Z is closed under
addition, subtraction and multiplication, but not division.

Two important subsets of integers are:

– Even numbers — an integer is even if it is exactly divisible by 2, or equivalently
if it can be written as the product of 2 and another integer. This means that
´14, 6 and 0 are all even.

– Odd numbers — an integer is odd when it is not even. Equivalently it can be
written as 2k + 1 where k is another integer. Thus 11 = 2 ˆ 5 + 1 and ´7 =
2 ˆ (´4) + 1 are both odd.

• Rational numbers — this is all numbers that can be written as the ratio of two inte-
gers. That is, any rational number r can be written as p/q where p, q are integers.
We denote this collection by Q standing for quoziente which is Italian for quotient or
ratio. Now we finally have a set of numbers which is closed under addition, subtrac-
tion, multiplication and division (of course you still need to be careful not to divide
by zero).

• Real numbers — generally we think of these numbers as numbers that can be written
as decimal expansions and we denote it by R. It is beyond the scope of this text to
go into the details of how to give a precise definition of real numbers, and the notion
that a real number can be written as a decimal expansion will be sufficient.

It took mathematicians quite a long time to realise that there were numbers that

2 If you let 1 be a prime number then you have to treat 1 ˆ 2 ˆ 3 and 2 ˆ 3 as different factorisations of
the number 6. This causes headaches for mathematicians, so they don’t let 1 be prime.

3 Some schools (and even some provinces!!) may use “I” for integers, but this is extremely non-standard
and they really should use correct notation.

2



THE BASICS 0.1 NUMBERS

could not be written as ratios of integers4. The first numbers that were shown to
be not-rational are square-roots of prime numbers, like

?
2. Other well known ex-

amples are π and e. Usually the fact that some numbers cannot be represented as
ratios of integers is harmless because those numbers can be approximated by ratio-
nal numbers to any desired precision.

The reason that we can approximate real numbers in this way is the surprising fact
that between any two real numbers, one can always find a rational number. So if we
are interested in a particular real number we can always find a rational number that
is extremely close. Mathematicians refer to this property by saying that Q is dense in
R.

So to summarise

This is not really a definition, but you should know these symbols

• N = the natural numbers,

• Z = the integers,

• Q = the rationals, and

• R = the reals.

Definition 0.1.1 (Sets of numbers).

§§ More on Real Numbers

In the preceding paragraphs we have talked about the decimal expansions of real numbers
and there is just one more point that we wish to touch on. The decimal expansions of
rational numbers are always periodic, that is the expansion eventually starts to repeat itself.
For example

2
15

= 0.133333333 . . .

5
17

= 0.294117647058823529411764705882352941176470588235294117647058823 . . .

4 The existence of such numbers caused mathematicians (particularly the ancient Greeks) all sorts of
philosophical problems. They thought that the natural numbers were somehow fundamental and
beautiful and “natural”. The rational numbers you can get very easily by taking “ratios” — a pro-
cess that is still somehow quite sensible. There were quite influential philosophers (in Greece at least)
called Pythagoreans (disciples of Pythagoras originally) who saw numbers as almost mystical objects
explaining all the phenomena in the universe, including beauty — famously they found fractions in
musical notes etc and “numbers constitute the entire heavens”. They believed that everything could be
explained by whole numbers and their ratios. But soon after Pythagoras’ theorem was discovered, so
were numbers that are not rational. The first proof of the existence of irrational numbers is sometimes
attributed to Hippasus in around 400BCE (not really known). It seems that his philosopher “friends”
were not very happy about this and essentially exiled him. Some accounts suggest that he was drowned
by them.

3
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where we have underlined some of the last example to make the period clearer. On the
other hand, irrational numbers, such as

?
2 and π, have expansions that never repeat.

If we want to think of real numbers as their decimal expansions, then we need those
expansions to be unique. That is, we don’t want to be able to write down two different
expansions, each giving the same real number. Unfortunately there are an infinite set of
numbers that do not have unique expansions. Consider the number 1. We usually just
write “1”, but as a decimal expansion it is

1.00000000000 . . .

that is, a single 1 followed by an infinite string of 0’s. Now consider the following number

0.99999999999 . . .

This second decimal expansions actually represents the same number — the number 1.
Let’s prove this. First call the real number this represents q, then

q = 0.99999999999 . . .

Let’s use a little trick to get rid of the long string of trailing 9’s. Consider 10q:

q = 0.99999999999 . . .
10q = 9.99999999999 . . .

If we now subtract one from the other we get

9q = 9.0000000000 . . .

and so we are left with q = 1.0000000 . . . . So both expansions represent the same real
number.

Thankfully this sort of thing only happens with rational numbers of a particular form
— those whose denominators are products of 2s and 5s. For example

3
25

= 0.1200000 ¨ ¨ ¨ = 0.119999999 . . .

´
7
32

= ´0.2187500000 ¨ ¨ ¨ = ´0.2187499999 . . .

9
20

= 0.45000000 ¨ ¨ ¨ = 0.4499999 . . .

We can formalise this result in the following theorem (which we haven’t proved in general,
but it’s beyond the scope of the text to do so):

Let x be a real number. Then x must fall into one of the following two categories,

• x has a unique decimal expansion, or

• x is a rational number of the form a
2k5ℓ where a P Z and k, l are non-negative

integers.

In the second case, x has exactly two expansions, one that ends in an infinite
string of 9’s and the other ending in an infinite string of 0’s.

Theorem 0.1.2.
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When we do have a choice of two expansions, it is usual to avoid the one that ends in
an infinite string of 9’s and write the other instead (omitting the infinite trailing string of
0’s).

0.2 Ĳ Sets

All of you will have done some basic bits of set-theory in school. Sets, intersection, unions,
Venn diagrams etc etc. Set theory now appears so thoroughly throughout mathematics
that it is difficult to imagine how Mathematics could have existed without it. It is really
quite surprising that set theory is a much newer part of mathematics than calculus. Math-
ematically rigorous set theory was really only developed in the 19th Century — primarily
by Georg Cantor5. Mathematicians were using sets before then (of course), however they
were doing so without defining things too rigorously and formally.

In mathematics (and elsewhere, including “real life”) we are used to dealing with col-
lections of things. For example

• a family is a collection of relatives.

• hockey team is a collection of hockey players.

• shopping list is a collection of items we need to buy.

Generally when we give mathematical definitions we try to make them very formal
and rigorous so that they are as clear as possible. We need to do this so that when we
come across a mathematical object we can decide with complete certainty whether or not
it satisfies the definition.

Unfortunately, it is the case that giving a completely rigorous definition of “set” would
take up far more of our time than we would really like6.

A “set” is a collection of distinct objects. The objects are referred to as “elements”
or “members” of the set.

Definition 0.2.1 (A not-so-formal definition of set).

Now — just a moment to describe some conventions. There are many of these in
mathematics. These are not firm mathematical rules, but just traditions. It makes it much
easier for people reading your work to understand what you are trying to say.

5 An extremely interesting mathematician who is responsible for much of our understanding of infinity.
Arguably his most famous results are that there are more real numbers than integers, and that there are
an infinite number of different infinities. His work, though now considered to be extremely important,
was not accepted by his peers, and he was labelled “a corrupter of youth” for teaching it. For some
reason we know that he spent much of his honeymoon talking and doing mathematics with Richard
Dedekind.

6 The interested reader is invited to google (or whichever search engine you prefer — DuckDuckGo?)
“Russell’s paradox”, “Axiomatic set theory” and “Zermelo-Fraenkel set theory” for a more complete
and far more detailed discussion of the basics of sets and why, when you dig into them a little, they are
not so basic.
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THE BASICS 0.2 SETS

• Use capital letters to denote sets, A, B, C, X, Y etc.

• Use lower case letters to denote elements of the sets a, b, c, x, y.

So when you are writing up homework, or just describing what you are doing, then if you
stick with these conventions people reading your work (including the person marking
your exams) will know — “Oh A is that set they are talking about” and “a is an element
of that set.”. On the other hand, if you use any old letter or symbol it is correct, but
confusing for the reader. Think of it as being a bit like spelling — if you don’t spell words
correctly people can usually still understand what you mean, but it is much easier if you
spell words the same way as everyone else.

We will encounter more of these conventions as we go — another good one is

• The letters i, j, k, l, m, n usually denote integers (like 1, 2, 3, ´5, 18, . . . ).

• The letters x, y, z, w usually denote real numbers (like 1.4323, π,
?

2, 6.0221415 ˆ 1023 . . .
and so forth).

So now that we have defined sets, what can we do with them? There is only thing we
can ask of a set

“Is this object in the set?”

and the set will answer

“yes” or “no”

For example, if A is the set of even numbers we can ask “Is 4 in A?” We get back the
answer “yes”. We write this as

4 P A

While if we ask “Is 3 in A?”, we get back the answer “no”. Mathematically we would
write this as

3 R A

So this symbol “P” is mathematical shorthand for “is an element of”, while the same sym-
bol with a stroke through it “R” is shorthand for “is not an element of”.

Notice that both of these statements, though they are written down as short strings of
three symbols, are really complete sentences. That is, when we read them out we have

“4 P A” is read as “Four is an element of A.”
“3 R A” is read as “Three is not an element of A.”

The mathematical symbols like “+”, “=” and “P” are shorthand7 and mathematical state-
ments like “4 + 3 = 7” are complete sentences.

7 Precise definitions aside, by “shorthand” we mean a collection of accepted symbols and abbreviations
to allow us to write more quickly and hopefully more clearly. People have been using various systems
of shorthand as long as people have been writing. Many of these are used and understood only by the
individual, but if you want people to be able to understand what you have written, then you need to
use shorthand that is commonly understood.
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This is an important point — mathematical writing is just like any other sort of writing.
It is very easy to put a bunch of symbols or words down on the page, but if we would like
it to be easy to read and understand, then we have to work a bit harder. When you write
mathematics you should keep in mind that someone else should be able to read it and
understand it.

Easy reading is damn hard writing.

Nathaniel Hawthorne, but possibly also a few others like Richard Sheridan.

We will come across quite a few different sets when doing mathematics. It must be
completely clear from the definition how to answer the question “Is this object in the set
or not?”

• “Let A be the set of even integers between 1 and 13.” — nice and clear.

• “Let B be the set of tall people in this class room.” — not clear.

More generally if there are only a small number of elements in the set we just list them all
out

• “Let C = t1, 2, 3u.”

When we write out the list we put the elements inside braces “t¨u”. Note that the order
we write things in doesn’t matter

C = t1, 2, 3u = t2, 1, 3u = t3, 2, 1u

because the only thing we can ask is “Is this object an element of C?” We cannot ask more
complex questions like “What is the third element of C?” — we require more sophisticated
mathematical objects to ask such questions8. Similarly, it doesn’t matter how many times
we write the same object in the list

C = t1, 1, 1, 2, 3, 3, 3, 3, 1, 2, 1, 2, 1, 3u = t1, 2, 3u

because all we ask is “Is 1 P C?”. Not “how many times is 1 in C?”.
Now — if the set is a bit bigger then we might write something like this

• C = t1, 2, 3, . . . , 40u the set of all integers between 1 and 40 (inclusive).

• A = t1, 4, 9, 16, . . . u the set of all perfect squares9

The “. . . ” is again shorthand for the missing entries. You have to be careful with this as
you can easily confuse the reader

• B = t3, 5, 7, . . . u — is this all odd primes, or all odd numbers bigger than 1 or ??
What is written is not sufficient for us to have a firm idea of what the writer intended.

Only use this where it is completely clear by context. A few extra words can save the
reader (and yourself) a lot of confusion.

Always think about the reader.

8 The interested reader is invited to look at “lists”, “multisets”, “totally ordered sets” and “partially
ordered sets” amongst many other mathematical objects that generalise the basic idea of sets.

9 i.e. integers that can be written as the square of another integer.

7
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0.3 Ĳ Other Important Sets

We have seen a few important sets above — namely N, Z, Q and R. However, arguably
the most important set in mathematics is the empty set.

The empty set (or null set or void set) is the set which contains no elements. It is
denoted ∅. For any object x, we always have x R ∅; hence ∅ = tu.

Definition 0.3.1 (Empty set).

Note that it is important to realise that the empty set is not nothing; think of it as an
empty bag. Also note that with quite a bit of hard work you can actually define the natural
numbers in terms of the empty set. Doing so is very formal and well beyond the scope of
this text.

When a set does not contain too many elements it is fine to specify it by listing out its
elements. But for infinite sets or even just big sets we can’t do this and instead we have to
give the defining rule. For example the set of all perfect square numbers we write as

S = tx s.t. x = k2 where k P Zu

Notice we have used another piece of shorthand here, namely s.t. , which stands for “such
that” or “so that”. We read the above statement as “S is the set of elements x such that x
equals k-squared where k is an integer”. This is the standard way of writing a set defined
by a rule, though there are several shorthands for “such that”. We shall use two them:

P = tp s.t. p is primeu = tp | p is primeu

Other people also use “:” as shorthand for “such that”. You should recognise all three of
these shorthands.

Example 0.3.2 (examples of sets)

Even more examples. . .

• Let A = t2, 3, 5, 7, 11, 13, 17, 19u and let

B = ta P A|a ă 8u = t2, 3, 5, 7u

the set of elements of A that are strictly less than 8.

• Even and odd integers

E = tn|n is an even integeru

= tn|n = 2k for some k P Zu

= t2n|n P Zu,

and similarly

O = tn|n is an odd integeru

= t2n + 1|n P Zu.

8
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• Square integers

S = tn2
|n P Zu.

The set10 S1 =
␣

n2|n P N
(

is not the same as S because S1 does not contain the
number 0, which is definitely a square integer and 0 is in S. We could also write
S =

␣

n2|n P Z, n ě 0
(

and S =
␣

n2|n = 0, 1, 2, . . .
(

.

Example 0.3.2

The sets A and B in the above example illustrate an important point. Every element in
B is an element in A, and so we say that B is a subset of A

Let A and B be sets. We say “A is a subset of B” if every element of A is also an
element of B. We denote this A Ď B (or B Ě A). If A is a subset of B and A and B
are not the same , so that there is some element of B that is not in A then we say
that A is a proper subset of B. We denote this by A Ă B (or B Ą A).

Definition 0.3.3.

Two things to note about subsets:

• Let A be a set. It is always the case that ∅ Ď A.

• If A is not a subset of B then we write A Ę B. This is the same as saying that there is
some element of A that is not in B. That is, there is some a P A such that a R B.

Example 0.3.4 (subsets)

Let S = t1, 2u. What are all the subsets of S? Well — each element of S can either be in
the subset or not (independent of the other elements of the set). So we have 2 ˆ 2 = 4
possibilities: neither 1 nor 2 is in the subset, 1 is but 2 is not, 2 is but 1 is not, and both 1
and 2 are. That is

∅, t1u, t2u, t1, 2u Ď S

This argument can be generalised with a little work to show that a set that contains exactly
n elements has exactly 2n subsets.

Example 0.3.4

In much of our work with functions later in the text we will need to work with subsets
of real numbers, particularly segments of the “real line”. A convenient and standard way
of representing such subsets is with interval notation.

10 Notice here we are using another common piece of mathematical short-hand. Very often in mathematics
we will be talking or writing about some object, like the set S above, and then we will create a closely
related object. Rather than calling this new object by a new symbol (we could have used T or R or. . . ),
we instead use the same symbol but with some sort of accent — such as the little single quote mark we
added to the symbol S to make S1 (read “S prime”). The point of this is to let the reader know that this
new object is related to the original one, but not the same. You might also see Ṡ, Ŝ, S̄, S̃ and others.
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Let a, b P R such that a ă b. We name the subset of all numbers between a and b
in different ways depending on whether or not the ends of the interval (a and b)
are elements of the subset.

• The closed interval [a, b] = tx P R : a ď x ď bu — both end points are
included.

• The open interval (a, b) = tx P R : a ă x ă bu — neither end point is
included.

We also define half-open11 intervals which contain one end point but not the
other:

(a, b] = tx P R : a ă x ď bu [a, b) = tx P R : a ď x ă bu

We sometimes also need unbounded intervals

[a, 8) = tx P R : a ď xu (a, 8) = tx P R : a ă xu

(´8, b] = tx P R : x ď bu (´8, b) = tx P R : x ă bu

These unbounded intervals do not include “˘8”, so that end of the interval is
always open12.

Definition 0.3.5 (Open and closed intervals of R).

§§ More on Sets

So we now know how to say that one set is contained within another. We will now define
some other operations on sets. Let us also start to be a bit more precise with our definitions
and set them out carefully as we get deeper into the text.

Let A and B be sets. We define the union of A and B, denoted A Y B, to be the set
of all elements that are in at least one of A or B.

A Y B = tx|x P A or x P Bu

Definition 0.3.6.

11 Also called “half-closed”. The preference for one term over the other may be related to whether a 500ml
glass containing 250ml of water is half-full or half-empty.

12 Infinity is not a real number. As mentioned in an earlier footnote, Cantor proved that there are an
infinite number of different infinities and so it is incorrect to think of 8 as being a single number. As
such it cannot be an element in an interval of the real line. We suggest that the reader that wants to learn
more about how mathematics handles infinity look up transfinite numbers and transfinite arithmetic.
Needless to say these topics are beyond the scope of this text.
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It is important to realise that we are using the word “or” in a careful mathematical
sense. We mean that x belongs to A or x belongs to B or both. Whereas in normal every-
day English “or” is often used to be “exclusive or” — A or B but not both13.

We also start the definition by announcing “Definition” so that the reader knows “We
are about to define something important”. We should also make sure that everything is
(reasonably) self-contained — we are not assuming the reader already knows A and B are
sets.

It is vital that we make our definitions clear otherwise anything we do with the defini-
tions will be very difficult to follow. As writers we must try to be nice to our readers14.

Let A and B be sets. We define the intersection of A and B, denoted A X B, to be
the set of elements that belong to both A and B.

A X B = tx | x P A and x P Bu

Definition 0.3.7.

Again note that we are using the word “and” in a careful mathematical sense (which
is pretty close to the usual use in English).

Example 0.3.8 (Union and intersection)

Let A = t1, 2, 3, 4u, B = tp : p is primeu, C = t5, 7, 9u and D = teven positive integersu.
Then

A X B = t2, 3u

B X D = t2u

A Y C = t1, 2, 3, 4, 5, 7, 9u

A X C = ∅

In this last case we see that the two sets have no elements in common — they are said to
be disjoint.

Example 0.3.8

0.4 Ĳ Functions

Now that we have reviewed basic ideas about sets we can start doing more interesting
things with them — functions.

13 When you are asked for your dining preferences on a long flight you are usually asked something like
“Chicken or beef?” — you get one or the other, but not both. Unless you are way at the back near the
toilets in which case you will be presented with which ever meal was less popular. Probably fish.

14 If you are finding this text difficult to follow then please complain to us authors and we will do our best
to improve it.
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When we are introduced to functions in mathematics, it is almost always as formulas.
We take a number x and do some things to it to get a new number y. For example,

y = f (x) = 3x ´ 7

Here, we take a number x, multiply it by 3 and then subtract seven to get the result.
This view of functions — a function is a formula — was how mathematicians defined

them up until the 19th century. As basic ideas of sets became better defined, people revised
ideas surrounding functions. The more modern definition of a function between two sets
is that it is a rule which assigns to each element of the first set a unique element of the
second set.

Consider the set of days of the week, and the set containing the alphabet

A = tSunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sundayu

B = ta,b,c,d,e,. . . ,x,y,zu

We can define a function f that takes a day (that is, an element of A) and turns it into the
first letter of that day (that is, an element of B). This is a valid function, though there is no
formula. We can draw a picture of the function as

Figure 0.4.1.

Clearly such pictures will work for small sets, but will get very messy for big ones.
When we shift back to talking about functions on real numbers, then we will switch to
using graphs of functions on the Cartesian plane.

This example is pretty simple, but this serves to illustrate some important points. If
our function gives us a rule for taking elements in A and turning them into elements from
B then

• the function must be defined for all elements of A — that is, no matter which element
of A we choose, the function must be able to give us an answer. Every function must
have this property.

• on the other hand, we don’t have to “hit” every element from B. In the above exam-
ple, we miss almost all the letters in B. A function that does reach every element of
B is said to be “surjective” or “onto”.

12
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• a given element of B may be reached by more than one element of A. In the above
example, the days “Tuesday” and “Thursday” both map to the letter T and similarly
the letters S is mapped to by both “Sunday” and “Saturday”. A function which does
not do this, that is, every element in A maps to a different element in B is called
“injective” or “one-to-one” — again we will come back to this later when we discuss
inverse function in Section 0.6.

Summarising this more formally, we have

Let A, B be non-empty sets. A function f from A to B, is a rule or formula that
takes elements of A as inputs and returns elements of B as outputs. We write this
as

f : A Ñ B

and if f takes a P A as an input and returns b P B then we write this as f (a) = b.
Every function must satisfy the following two conditions

• The function must be defined on every possible input from the set A. That
is, no matter which element a P A we choose, the function must return an
element b P B so that f (a) = b.

• The function is only allowed to return one result for each input15. So if we
find that f (a) = b1 and f (a) = b2 then the only way that f can be a function
is if b1 is exactly the same as b2.

Definition 0.4.1.

We must include the input and output sets A and B in the definition of the function.
This is one of the reasons that we should not think of functions as just formulas. The input
and output sets have proper mathematical names, which we give below:

15 You may have learned this in the context of plotting functions on the Cartesian plane, as “the vertical
line test”. If the graph intersects a vertical line twice, then the same x-value will give two y-values and
so the graph does not represent a function.
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Let f : A Ñ B be a function. Then

• the set A of inputs to our function is the “domain” of f ,

• the set B which contains all the results is called the codomain,

• We read “ f (a) = b” as “ f of a is b”, but sometimes we might say “ f maps a
to b” or “b is the image of a”.

• The codomain must contain all the possible results of the function, but it
might also contain a few other elements. The subset of B that is exactly the
outputs of A is called the “range” of f . We define it more formally by

range of f = tb P B | there is some a P A so that f (a) = bu

= t f (a) P B | a P Au

The only elements allowed in that set are those elements of B that are the
images of elements in A.

Definition 0.4.2.

Example 0.4.3 (domains and ranges)

Let us go back to the “days of the week” function example that we worked on above, we
can define the domain, codomain and range:

• The domain, A, is the set of days of the week.

• The codomain, B, is the 26 letters of the alphabet.

• The range is the set tF, M, T, S, Wu — no other elements of B are images of inputs
from A.

Example 0.4.3

Example 0.4.4 (more domains and ranges)

A more numerical example — let g : R Ñ R be defined by the formula g(x) = x2. Then

• the domain and codomain are both the set of all real numbers, but

• the range is the set [0, 8).

Now — let h : [0, 8) Ñ [0, 8) be defined by the formula h(x) =
?

x. Then

• the domain and codomain are both the set [0, 8), that is all non-negative real num-
bers, and

• in this case the range is equal to the codomain, namely [0, 8).

14
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Example 0.4.4

Example 0.4.5 (piece-wise function)

Yet another numerical example.

V : [´1, 1] Ñ R defined by V(t) =

#

0 if ´ 1 ď t ă 0
120 if 0 ď t ď 1

This is an example of a “piece-wise” function — that is, one that is not defined by a single
formula, but instead defined piece-by-piece. This function has domain [´1, 1] and its
range is t0, 120u. We could interpret this function as measuring the voltage across a switch
that is flipped on at time t = 0.

Example 0.4.5

Almost all the functions we look at from here on will be formulas. However it is
important to note, that we have to include the domain and codomain when we describe
the function. If the domain and codomain are not stated explicitly then we should assume
that both are R.

0.5 Ĳ Parsing Formulas

Consider the formula

f (x) =
1 + x

1 + 2x ´ x2

This is an example of a simple rational function — that is, the ratio of two polynomials.
When we start to examine these functions later in the text, it is important that we are able
to understand how to evaluate such functions at different values of x. For example

f (5) =
1 + 5

1 + 10 ´ 25
=

6
´14

= ´
3
7

More important, however, is that we understand how we decompose this function into
simpler pieces. Since much of your calculus course will involve creating and studying
complicated functions by building them up from simple pieces, it is important that you
really understand this point.

Now to get there we will take a small excursion into what are called parse-trees. You
already implicitly use these when you evaluate the function at a particular value of x, but
our aim here is to formalise this process a little more.

We can express the steps used to evaluate the above formula as a tree-like diagram16.
We can decompose this formula as the following tree-like diagram

16 Such trees appear in many areas of mathematics and computer science. The reason for the name is that
they look rather like trees — starting from their base they grow and branch out towards their many
leaves. For some reason, which remains mysterious, they are usually drawn upside down.
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A parse tree of the function 1+x
1+2x´x2 .

Figure 0.5.1.

Let us explain the pieces here.

• The picture consists of boxes and arrows which are called “nodes” and “edges” re-
spectively.

• There are two types of boxes, those containing numbers and the variable x, and those
containing arithmetic operations “+”,“´”, “ˆ” and “/”.

• If we wish to represent the formula 3 + 5, then we can draw this as the following
cherry-like configuration

which tells us to take the numbers “3” and “5” and add them together to get 8.

evaluates to
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• By stringing such little “cherries” together we can describe more complicated for-
mulas. For example, if we compute “(3 + 5) ˆ 2”, we first compute “(3 + 5)” and
then multiply the result by 2. The corresponding diagrams are

evaluates to evaluates to

The tree we drew in Figure 0.5.1 above representing our formula has x in some of the
boxes, and so when we want to compute the function at a particular value of x — say at
x = 5 — then we replace those “x”s in the tree by that value and then compute back up
the tree. See the example below

17
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Start ÞÑ

ÞÑ ÞÑ

ÞÑ and we are done.

Figure 0.5.2.

This is not the only parse tree associated with the formula for f (x); we could also
decompose it as

18
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Figure 0.5.3.

We are able to do this because when we compute the denominator 1 + 2x ´ x2, we can
compute it as

1 + 2x ´ x2 = either (1 + 2x) ´ x2 or = 1 + (2x ´ x2).

Both17 are correct because addition is “associative”. Namely

a + b + c = (a + b) + c = a + (b + c).

Multiplication is also associative:

a ˆ b ˆ c = (a ˆ b) ˆ c = a ˆ (b ˆ c).

Example 0.5.1 (parsing a formula)

Consider the formula

g(t) =
(

t + π

t ´ π

)
¨ sin

(
t + π

2

)
.

This introduces a new idea — we have to evaluate t+π
2 and then compute the sine of that

number. The corresponding tree can be written as

17 We could also use, for example, 1 + 2x ´ x2 = (1 ´ x2) + 2x.
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If we want to evaluate this at t = π/2 then we get the following. . .

Start ÞÑ

ÞÑ ÞÑ

ÞÑ and we are done.

Example 0.5.1

It is highly unlikely that you will ever need to explicitly construct such a tree for any
problem in the remainder of the text. The main point of introducing these objects and
working through a few examples is to realise that all the functions that we will examine are
constructed from simpler pieces. In particular we have constructed all the above examples
from simple “building blocks”

• constants — fixed numbers like 1, π and so forth

• variables — usually x or t, but sometimes other symbols

• standard functions — like trigonometric functions (sine, cosine and tangent), expo-
nentials and logarithms.
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These simple building blocks are combined using arithmetic

• addition and subtraction — a + b and a ´ b

• multiplication and division — a ¨ b and a/b

• raising to a power — an

• composition — given two functions f (x) and g(x) we form a new function f (g(x))
by evaluating y = g(x) and then evaluating f (y) = f (g(x)).

During the rest of the course when we learn how to compute limits and derivatives, our
computations require us to understand the way we construct functions as we have just
described.

That is, in order to compute the derivative18 of a function we have to see how to con-
struct the function from these building blocks (i.e. the constants, variables and standard
functions) using arithmetic operations. We will then construct the derivative by follow-
ing these same steps. There will be simple rules for finding the derivatives of the simpler
pieces and then rules for putting them together following the arithmetic used to construct
the function.

0.6 Ĳ Inverse Functions

There is one last thing that we should review before we get into the main material of
the course and that is inverse functions. As we have seen above functions are really just
rules for taking an input (almost always a number), processing it somehow (usually by a
formula) and then returning an output (again, almost always a number).

input number x ÞÑ f does “stuff” to x ÞÑ return number y

In many situations it will turn out to be very useful if we can undo whatever it is that our
function has done. ie

take output y ÞÑ do “stuff” to y ÞÑ return the original x

When it exists, the function “which undoes” the function f (x) is found by solving y =
f (x) for x as a function of y and is called the inverse function of f . It turns out that it is
not always possible to solve y = f (x) for x as a function of y. Even when it is possible, it
can be really hard to do19.

For example — a particle’s position, s, at time t is given by the formula s(t) = 7t
(sketched below). Given a calculator, and any particular number t, you can quickly work
out the corresponding positions s. However, if you are asked the question “When does
the particle reach s = 4?” then to answer it we need to be able to “undo” s(t) = 4 to

18 We get to this in Chapter 2 — don’t worry about exactly what it is just now.
19 Indeed much of encryption exploits the fact that you can find functions that are very quick to do, but

very hard to undo. For example — it is very fast to multiply two large prime numbers together, but very
hard to take that result and factor it back into the original two primes. The interested reader should
look up trapdoor functions.
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isolate t. In this case, because s(t) is always increasing, we can always undo s(t) to get a
unique answer:

s(t) = 7t = 4 if and only if t =
4
7

.

However, this question is not always so easy. Consider the sketch of y = sin(x) below;
when is y = 1

2? That is, for which values x is sin(x) = 1
2? To rephrase it again, at which

values of x does the curve y = sin x (which is sketched in the right half of Figure 0.6.1)
cross the horizontal straight line y = 1

2 (which is also sketched in the same figure)?

Figure 0.6.1.

We can see that there are going to be an infinite number of x-values that give y =
sin(x) = 1

2 ; there is no unique answer.
Recall (from Definition 0.4.1) that for any given input, a function must give a unique

output. So if we want to find a function that undoes s(t), then things are good — because
each s-value corresponds to a unique t-value. On the other hand, the situation with y =
sin x is problematic — any given y-value is mapped to by many different x-values. So
when we look for an unique answer to the question “When is sin x = 1

2?” we cannot
answer it.

This “uniqueness” condition can be made more precise:

A function f is one-to-one (injective) when it never takes the same y value more
than once. That is

if x1 ‰ x2 then f (x1) ‰ f (x2)

Definition 0.6.1.

There is an easy way to test this when you have a plot of the function — the horizontal
line test.
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A function is one-to-one if and only if no horizontal line y = c intersects the
graph y = f (x) more than once.

Definition 0.6.2 (Horizontal line test).

i.e. every horizontal line intersects the graph either zero or one times. Never twice or
more. This test tell us that y = x3 is one-to-one, but y = x2 is not. However note that if we
restrict the domain of y = x2 to x ě 0 then the horizontal line test is passed. This is one of
the reasons we have to be careful to consider the domain of the function.

Figure 0.6.2.

When a function is one-to-one then it has an inverse function.

Let f be a one-to-one function with domain A and range B. Then its inverse
function is denoted f ´1 and has domain B and range A. It is defined by

f ´1(y) = x whenever f (x) = y

for any y P B.

Definition 0.6.3.

So if f maps x to y, then f ´1 maps y back to x. That is f ´1 “undoes” f . Because of this
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we have

f ´1( f (x)) = x for any x P A

f ( f ´1(y)) = y for any y P B

We have to be careful not to confuse f ´1(x) with
1

f (x)
. The “´1” is not an exponent.

Example 0.6.4

Let f (x) = x5 + 3 on domain R. To find its inverse we do the following

• Write y = f (x); that is y = x5 + 3.

• Solve for x in terms of y (this is not always easy) — x5 = y ´ 3, so x = (y ´ 3)1/5.

• The solution is f ´1(y) = (y ´ 3)1/5.

• Recall that the “y” in f ´1(y) is a dummy variable. That is, f ´1(y) = (y ´ 3)1/5 means
that if you feed the number y into the function f ´1 it outputs the number (y ´ 3)1/5.
You may call the input variable anything you like. So if you wish to call the input
variable “x” instead of “y” then just replace every y in f ´1(y) with an x.

• That is f ´1(x) = (x ´ 3)1/5.

Example 0.6.4

Example 0.6.5

Let g(x) =
?

x ´ 1 on the domain x ě 1. We can find the inverse in the same way:

y =
?

x ´ 1

y2 = x ´ 1

x = y2 + 1 = f ´1(y) or, writing input variable as “x”:

f ´1(x) = x2 + 1.

Example 0.6.5

Let us now turn to finding the inverse of sin(x) — it is a little more tricky and we have
to think carefully about domains.

Example 0.6.6

We have seen (back in Figure 0.6.1) that sin(x) takes each value y between ´1 and +1 for
infinitely many different values of x (see the left-hand graph in the figure below). Conse-
quently sin(x), with domain ´8 ă x ă 8 does not have an inverse function.
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But notice that as x runs from ´π
2 to +π

2 , sin(x) increases from ´1 to +1. (See the middle
graph in the figure above.) In particular, sin(x) takes each value ´1 ď y ď 1 for exactly
one ´π

2 ď x ď π
2 . So if we restrict sin x to have domain ´π

2 ď x ď π
2 , it does have an

inverse function, which is traditionally called arcsine (see Appendix A.9).
That is, by definition, for each ´1 ď y ď 1, arcsin(y) is the unique ´π

2 ď x ď π
2 obeying

sin(x) = y. Equivalently, exchanging the dummy variables x and y throughout the last
sentence gives that for each ´1 ď x ď 1, arcsin(x) is the unique ´π

2 ď y ď π
2 obeying

sin(y) = x.

Example 0.6.6

It is an easy matter to construct the graph of an inverse function from the graph of the
original function. We just need to remember that

Y = f ´1(X) ðñ f (Y) = X

which is y = f (x) with x renamed to Y and y renamed to X.
Start by drawing the graph of f , labelling the x– and y–axes and labelling the curve

y = f (x).

x

y

y = f(x)

Now replace each x by Y and each y by X and replace the resulting label X = f (Y) on the
curve by the equivalent Y = f ´1(X).
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Y

X
Y = f−1(X)

Finally we just need to redraw the sketch with the Y axis running vertically (with Y in-
creasing upwards) and the X axis running horizontally (with X increasing to the right).
To do so, pretend that the sketch is on a transparency or on a very thin piece of paper that
you can see through. Lift the sketch up and flip it over so that the Y axis runs vertically
and the X axis runs horizontally. If you want, you can also convert the upper case X into
a lower case x and the upper case Y into a lower case y.

X

Y Y = f−1(X)

x

y y = f−1(x)

Another way to say “flip the sketch over so as to exchange the x– and y–axes” is “reflect in
the line y = x”. In the figure below the blue “horizontal” elliptical disk that is centred on
(a, b) has been reflected in the line y = x to give the red “vertical” elliptical disk centred
on (b, a).
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x

y
y = x

(a, b)

(b, a)

Example 0.6.7

As an example, let f (x) = x2 with domain 0 ď x ă 8.

• When x = 0, f (x) = 02 = 0.
• As x increases, x2 gets bigger and bigger.
• When x is very large and positive, x2 is also very large and positive. (For example,
think x = 100.)

The graph of y = f (x) = x2 is the blue curve below. By definition, Y = f ´1(X) if
X = f (Y) = Y2. That is, if Y =

?
X. (Remember that, to be in the domain of f , we must

have Y ě 0.) So the inverse function of “square” is “square root”. The graph of f ´1 is the
red curve below. The red curve is the reflection of the blue curve in the line y = x.

x

y
y = x

y = x2

y =
√
x

Example 0.6.7
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LIMITS

Chapter 1

So very roughly speaking, “Differential Calculus” is the study of how a function changes
as its input changes. The mathematical object we use to describe this is the “derivative” of
a function. To properly describe what this thing is we need some machinery; in particular
we need to define what we mean by “tangent” and “limit”. We’ll get back to defining the
derivative in Chapter 2.

1.1 Ĳ Drawing Tangents and a First Limit

Our motivation for developing “limit” — being the title and subject of this chapter — is
going to be two related problems of drawing tangent lines and computing velocity.

Now — our treatment of limits is not going to be completely mathematically rigorous,
so we won’t have too many formal definitions. There will be a few mathematically precise
definitions and theorems as we go, but we’ll make sure there is plenty of explanation
around them.

Let us start with the “tangent line” problem. Of course, we need to define “tangent”,
but we won’t do this formally. Instead let us draw some pictures.

Figure 1.1.1.

Here we have drawn two very rough sketches of the curve y = x2 for x ě 0. These are
not very good sketches for a couple of reasons
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LIMITS 1.1 DRAWING TANGENTS AND A FIRST LIMIT

• The curve in the figure does not pass through (0, 0), even though (0, 0) lies on y = x2.

• The top-right end of the curve doubles back on itself and so fails the vertical line test
that all functions must satisfy1 — for each x-value there is exactly one y-value for
which (x, y) lies on the curve y = x2.

So let’s draw those more carefully.

Tangent to the
curve at this point Not a tangent line

Sketches of the curve y = x2. (left) shows a tangent line, while (right) shows a line that is
not a tangent.

Figure 1.1.2.

These are better. In both cases we have drawn y = x2 (carefully) and then picked a
point on the curve — call it P. Let us zoom in on the “good” example:

We see that, the more we zoom in on the point P, the more the graph of the function
(drawn in black) looks like a straight line — that line is the tangent line (drawn in blue).

Figure 1.1.3.

We see that as we zoom in on the point P, the graph of the function looks more and
more like a straight line. If we kept on zooming in on P then the graph of the function
would be indistinguishable from a straight line. That line is the tangent line (which we

1 Take a moment to go back and reread Definition 0.4.1.
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LIMITS 1.1 DRAWING TANGENTS AND A FIRST LIMIT

have drawn in blue). A little more precisely, the blue line is “the tangent line to the func-
tion at P”. We have to be a little careful, because if we zoom in at a different point, then
we will find a different tangent line.

Now let’s zoom in on the “bad” example we see that the blue line looks very different
from the function; because of this, the blue line is not the tangent line at P.

Zooming in on P we see that the function (drawn in black) looks more and more like a
straight line — however it is not the same line as that drawn in blue. Because of this the
blue line is not the tangent line.

Figure 1.1.4.

Here are a couple more examples of tangent lines

Tangent to the
curve at this point

Tangent to the
curve at this point

distant
intersection

More examples of tangent lines.

Figure 1.1.5.

The one on the left is very similar to the good example on y = x2 that we saw above,
while the one on the right is different — it looks a little like the “bad” example, in that it
crosses our function the curve at some distant point. Why is the line in Figure 1.1.5(right)
a tangent while the line in Figure 1.1.2(right) not a tangent? To see why, we should again
zoom in close to the point where we are trying to draw the tangent.
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Figure 1.1.6.

As we saw above in Figure 1.1.4, when we zoom in around our example of “not a tan-
gent line” we see that the straight line looks very different from the curve at the “point
of tangency” — i.e. where we are trying to draw the tangent. The line drawn in Fig-
ure 1.1.5(right) looks more and more like the function as we zoom in.

This example raises an important point — when we are trying to draw a tangent line,
we don’t care what the function does a long way from the point; the tangent line to the
curve at a particular point P, depends only on what the function looks like close to that
point P.

To illustrate this consider the sketch of the function y = sin(x) and its tangent line
at (x, y) = (0, 0):

Figure 1.1.7.

As we zoom in, the graph of sin(x) looks more and more like a straight line — in
fact it looks more and more like the line y = x. We have also sketched this tangent line.
What makes this example a little odd is that the tangent line crosses the function. In the
examples above, our tangent lines just “kissed” the curve and did not cross it (or at least
did not cross it nearby).

Using this idea of zooming in at a particular point, drawing a tangent line is not too
hard. However, finding the equation of the tangent line presents us with a few challenges.
Rather than leaping into the general theory, let us do a specific example. Let us find
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LIMITS 1.1 DRAWING TANGENTS AND A FIRST LIMIT

the equation of the tangent line to the curve y = x2 at the point P with coordinates2

(x, y) = (1, 1).
To find the equation of a line we either need

• the slope of the line and a point on the line, or

• two points on the line, from which we can compute the slope via the formula

m =
y2 ´ y1

x2 ´ x1

and then write down the equation for the line via a formula such as

y = m ¨ (x ´ x1) + y1.

We cannot use the first method because we do not know what the slope of the tangent
line should be. To work out the slope we need calculus — so we’ll be able to use this
method once we get to the next chapter on “differentiation”.

It is not immediately obvious how we can use the second method, since we only have
one point on the curve, namely (1, 1). However we can use it to “sneak up” on the answer.
Let’s approximate the tangent line, by drawing a line that passes through (1, 1) and some
nearby point — call it Q. Here is our recipe:

• We are given the point P = (1, 1) and we are told

Find the tangent line to the curve y = x2 that passes through P = (1, 1).

• We don’t quite know how to find a line given just 1 point, however we do know how
to find a line passing through 2 points. So pick another point on the curves whose
coordinates are very close to P. Now rather than picking some actual numbers, I am
going to write our second point as Q = (1 + h, (1 + h)2). That is, a point Q whose
x-coordinate is equal to that of P plus a little bit — where the little bit is some small
number h. And since this point lies on the curve y = x2, and Q’s x-coordinate is
1 + h, Q’s y-coordinate must be (1 + h)2.

If having h as a variable rather than a number bothers you, start by thinking of h
as 0.1.

• A picture of the situation will help.

2 Note that the coordinates (x, y) is an ordered pair of two numbers x and y. Traditionally the first number
is called the abscissa while the second is the ordinate, but these terms are a little archaic. It is now much
more common to hear people refer to the first number as the x-coordinate and the second as y-coordinate.
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tangent line
we want

approximation
to tangent line

Figure 1.1.8.

• This line that passes through the curve in two places P and Q is called a “secant
line”.

• The slope of the line is then

m =
y2 ´ y1

x2 ´ x1

=
(1 + h)2 ´ 1
(1 + h) ´ 1

=
1 + 2h + h2 ´ 1

h
=

2h + h2

h
= 2 + h

where we have expanded (1 + h)2 = 1 + 2h + h2 and then cleaned up a bit.

Now this isn’t our tangent line because it passes through 2 nearby points on the curve
— however it is a reasonable approximation of it. Now we can make that approximation
better and so “sneak up” on the tangent line by considering what happens when we move
this point Q closer and closer to P. i.e. make the number h closer and closer to zero.

tangent line
we want

approximation
to tangent line

tangent line
we want

better approximation

Figure 1.1.9.

First look at the picture. The original choice of Q is on the left, while on the right we
have drawn what happens if we choose h1 to be some number a little smaller than h, so
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that our point Q becomes a new point Q1 that is a little closer to P. The new approximation
is better than the first.

So as we make h smaller and smaller, we bring Q closer and closer to P, and make our
secant line a better and better approximation of the tangent line. We can observe what
happens to the slope of the line as we make h smaller by plugging some numbers into our
formula m = 2 + h:

h = 0.1 m = 2.1
h = 0.01 m = 2.01

h = 0.001 m = 2.001.

So again we see that as this difference in x becomes smaller and smaller, the slope appears
to be getting closer and closer to 2. We can write this more mathematically as

lim
hÑ0

(1 + h)2 ´ 1
h

= 2

This is read as

The limit, as h approaches 0, of (1+h)2´1
h is 2.

This is our first limit! Notice that we can see this a little more clearly with a quick bit of
algebra:

(1 + h)2 ´ 1
h

=
(1 + 2h + h2) ´ 1

h

=
2h + h2

h
= 2 + h

So it is not unreasonable to expect that

lim
hÑ0

(1 + h)2 ´ 1
h

= lim
hÑ0

(2 + h) = 2.

Our tangent line can be thought of as the end of this process — namely as we bring
Q closer and closer to P, the slope of the secant line comes closer and closer to that of the
tangent line we want. Since we have worked out what the slope is — that is the limit we
saw just above — we now know the slope of the tangent line is 2. Given this, we can work
out the equation for the tangent line.

• The equation for the line is y = mx + c. We have 2 unknowns m and c — so we need
2 pieces of information to find them.

• Since the line is tangent to P = (1, 1) we know the line must pass through (1, 1).
From the limit we computed above, we also know that the line has slope 2.

• Since the slope is 2 we know that m = 2. Thus the equation of the line is y = 2x + c.

• We know that the line passes through (1, 1), so that y = 2x+ c must be 1 when x = 1.
So 1 = 2 ¨ 1 + c, which forces c = ´1.

So our tangent line is y = 2x ´ 1.
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1.2 Ĳ Another Limit and Computing Velocity

Computing tangent lines is all very well, but what does this have to do with applications
or the “Real World”? Well - at least initially our use of limits (and indeed of calculus) is
going to be a little removed from real world applications. However as we go further and
learn more about limits and derivatives we will be able to get closer to real problems and
their solutions.

So stepping just a little closer to the real world, consider the following problem. You
drop a ball from the top of a very very tall building. Let t be elapsed time measured in
seconds, and s(t) be the distance the ball has fallen in metres. So s(0) = 0.

Quick aside: there is quite a bit going on in the statement of this problem. We have
described the general picture — tall building, ball, falling — but we have also introduced
notation, variables and units. These will be common first steps in applications and are
necessary in order to translate a real world problem into mathematics in a clear and con-
sistent way.

Galileo3 worked out that s(t) is a quadratic function:

s(t) = 4.9t2.

The question that is posed is

How fast is the ball falling after 1 second?

Now before we get to answering this question, we should first be a little more precise.
The wording of this question is pretty sloppy for a couple of reasons:

• What we do mean by “after 1 second”? We know the ball will move faster and faster
as time passes, so after 1 second it does not fall at one fixed speed.

• As it stands a reasonable answer to the question would be just “really fast”. If the
person asking the question wants a numerical answer it would be better to ask “At
what speed” or “With what velocity”.

We should also be careful using the words “speed” and “velocity” — they are not inter-
changeable.

• Speed means the distance travelled per unit time and is always a non-negative num-
ber. An unmoving object has speed 0, while a moving object has positive speed.

• Velocity, on the other hand, also specifies the direction of motion. In this text we will
almost exclusively deal with objects moving along straight lines. Because of this

3 Perhaps one of the most famous experiments in all of physics is Galileo’s leaning tower of Pisa exper-
iment, in which he dropped two balls of different masses from the top of the tower and observed that
the time taken to reach the ground was independent of their mass. This disproved Aristotle’s assertion
that heavier objects fall faster. It is quite likely that Galileo did not actually perform this experiment.
Rather it was a thought-experiment. However a quick glance at Wikipedia will turn up some won-
derful footage from the Apollo 15 mission showing a hammer and feather being dropped from equal
height hitting the moon’s surface at the same time. Finally, Galileo determined that the speed of falling
objects increases at a constant rate, which is equivalent to the formula stated here, but it is unlikely that
he wrote down an equation exactly as it is here.
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velocities will be positive or negative numbers indicating which direction the object
is moving along the line. We will be more precise about this later4.

A better question is

What is the velocity of the ball precisely 1 second after it is dropped?

or even better:

What is the velocity of the ball at the 1 second mark?

This makes it very clear that we want to know what is happening at exactly 1 second after
the ball is dropped.

There is something a little subtle going on in this question. In particular, what do we
mean by the velocity at t = 1?. Surely if we freeze time at t = 1 second, then the object is
not moving at all? This is definitely not what we mean.

If an object is moving at a constant velocity5 in the positive direction, then that velocity
is just the distance travelled divided by the time taken. That is

v =
distance moved

time taken

An object moving at constant velocity that moves 27 metres in 3 seconds has velocity

v =
27m
3s

= 9m/s.

When velocity is constant everything is easy.
However, in our falling object example, the object is being acted on by gravity and its

speed is definitely not constant. Instead of asking for THE velocity, let us examine the
“average velocity” of the object over a certain window of time. In this case the formula is
very similar

average velocity =
distance moved

time taken

But now I want to be more precise, instead write

average velocity =
difference in distance

difference in time

Now in spoken English we haven’t really changed much — the distance moved is the
difference in position, and the time taken is just the difference in time — but the latter is
more mathematically precise, and is easy to translate into the following equation

average velocity =
s(t2) ´ s(t1)

t2 ´ t1
.

4 Getting the sign of velocity wrong is a very common error — you should be careful with it.
5 Newton’s first law of motion states that an object in motion moves with constant velocity unless a force

acts on it — for example gravity or friction.

37



LIMITS 1.2 ANOTHER LIMIT AND COMPUTING VELOCITY

This is the formula for the average velocity of our object between time t1 and t2. The
denominator is just the difference between these times and the numerator is the difference
in position — i.e. position at time t1 is just s(t1) and position at time t2 is just s(t2).

So what is the average velocity of the falling ball between 1 and 1.1 seconds? All we
need to do now is plug some numbers into our formula

average velocity =
difference in position

difference in time

=
s(1.1) ´ s(1)

1.1 ´ 1

=
4.9(1.1)2 ´ 4.9(1)

0.1
=

4.9 ˆ 0.21
0.1

= 10.29m/s

And we have our average velocity. However there is something we should notice about
this formula and it is easier to see if we sketch a graph of the function s(t)

Figure 1.2.1.

So on the left I have drawn the graph and noted the times t = 1 and t = 1.1. The
corresponding positions on the axes and the two points on the curve. On the right I have
added a few more details. In particular I have noted the differences in position and time,
and the line joining the two points. Notice that the slope of this line is

slope =
change in y
change in x

=
difference in s
difference in t

which is precisely our expression for the average velocity.
Let us examine what happens to the average velocity as we look over smaller and

smaller time-windows.

time window average velocity
1 ď t ď 1.1 10.29

1 ď t ď 1.01 9.849
1 ď t ď 1.001 9.8049

1 ď t ď 1.0001 9.80049
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As we make the time interval smaller and smaller we find that the average velocity is
getting closer and closer to 9.8. We can be a little more precise by finding the average
velocity between t = 1 and t = 1 + h — this is very similar to what we did for tangent
lines.

average velocity =
s(1 + h) ´ s(1)
(1 + h) ´ 1

=
4.9(1 + h)2 ´ 4.9

h

=
9.8h + 4.9h2

h
= 9.8 + 4.9h

Now as we squeeze this window between t = 1 and t = 1 + h down towards zero, the
average velocity becomes the “instantaneous velocity” — just as the slope of the secant
line becomes the slope of the tangent line. This is our second limit

v(1) = lim
hÑ0

s(1 + h) ´ s(1)
h

= 9.8

More generally we define the instantaneous velocity at time t = a to be the limit

v(a) = lim
hÑ0

s(a + h) ´ s(a)
h

We read this as

The velocity at time a is equal to the limit as h goes to zero of s(a+h)´s(a)
h .

While we have solved the problem stated at the start of this section, it is clear that if we
wish to solve similar problems that we will need to understand limits in a more general
and systematic way.

1.3 Ĳ The Limit of a Function

Before we come to definitions, let us start with a little notation for limits.

We will often write

lim
xÑa

f (x) = L

which should be read as

The limit of f (x) as x approaches a is L.

Notation 1.3.1.
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The notation is just shorthand — we don’t want to have to write out long sentences
as we do our mathematics. Whenever you see these symbols you should think of that
sentence.

This shorthand also has the benefit of being mathematically precise (we’ll see this
later), and (almost) independent of the language in which the author is writing. A mathe-
matician who does not speak English can read the above formula and understand exactly
what it means.

In mathematics, like most languages, there is usually more than one way of writing
things and we can also write the above limit as

f (x) Ñ L as x Ñ a

This can also be read as above, but also as

f (x) goes to L as x goes to a

They mean exactly the same thing in mathematics, even though they might be written,
read and said a little differently.

To arrive at the definition of limit, we want to start6 with a very simple example.

Example 1.3.2

Consider the following function.

f (x) =

$

’

&

’

%

2x x ă 3
9 x = 3
2x x ą 3

This is an example of a piece-wise function7. That is, a function defined in several pieces,
rather than as a single formula. We evaluate the function at a particular value of x on a
case-by-case basis. Here is a sketch of it

Notice the two circles in the plot. One is open, ˝ and the other is closed ‚.

• A filled circle has quite a precise meaning — a filled circle at (x, y) means that the
function takes the value f (x) = y.

6 Well, we had two limits in the previous sections, so perhaps we really want to “restart” with a very
simple example.

7 We saw another piecewise function back in Example 0.4.5.
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• An open circle is a little harder — an open circle at (3, 6) means that the point (3, 6)
is not on the graph of y = f (x), i.e. f (3) ‰ 6. We should only use the open circle
where it is absolutely necessary in order to avoid confusion.

This function is quite contrived, but it is a very good example to start working with
limits more systematically. Consider what the function does close to x = 3. We already
know what happens exactly at 3 — f (x) = 9 — but I want to look at how the function
behaves very close to x = 3. That is, what does the function do as we look at a point x
that gets closer and closer to x = 3.

If we plug in some numbers very close to 3 (but not exactly 3) into the function we see
the following:

x 2.9 2.99 2.999 ˝ 3.001 3.01 3.1
f (x) 5.8 5.98 5.998 ˝ 6.002 6.02 6.2

So as x moves closer and closer to 3, without being exactly 3, we see that the function
moves closer and closer to 6. We can write this as

lim
xÑ3

f (x) = 6

That is

The limit as x approaches 3 of f (x) is 6.

So for x very close to 3, without being exactly 3, the function is very close to 6 — which
is a long way from the value of the function exactly at 3, f (3) = 9. Note well that the
behaviour of the function as x gets very close to 3 does not depend on the value of the
function at 3.

Example 1.3.2

We now have enough to make an informal definition of a limit, which is actually suffi-
cient for most of what we will do in this text.

We write

lim
xÑa

f (x) = L

if the value of the function f (x) is sure to be arbitrarily close to L whenever the
value of x is close enough to a, without8 being exactly a.

Definition 1.3.3 (Informal definition of limit).

8 You may find the condition “without being exactly a” a little strange, but there is a good reason for it.
One very important application of limits, indeed the main reason we teach the topic, is in the definition
of derivatives (see Definition 2.2.1 in the next chapter). In that definition we need to compute the limit

lim
xÑa

f (x) ´ f (a)
x ´ a

. In this case the function whose limit is being taken, namely f (x)´ f (a)
x´a , is not defined at

all at x = a.
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In order to make this definition more mathematically correct, we need to make the idea
of “closer and closer” more precise — we do this in Section 1.7. It should be emphasised
that the formal definition and the contents of that section are optional material.

For now, let us use the above definition to examine a more substantial example.

Example 1.3.4

Let f (x) = x´2
x2+x´6 and consider its limit as x Ñ 2.

• We are really being asked

lim
xÑ2

x ´ 2
x2 + x ´ 6

= what?

• Now if we try to compute f (2) we get 0/0 which is undefined. The function is not
defined at that point — this is a good example of why we need limits. We have to
sneak up on these places where a function is not defined (or is badly behaved).

• VERY IMPORTANT POINT: the fraction 0
0 is not 8 and it is not 1, it is not de-

fined. We cannot ever divide by zero in normal arithmetic and obtain a consistent
and mathematically sensible answer. If you learned otherwise in high-school, you
should quickly unlearn it.

• Again, we can plug in some numbers close to 2 and see what we find

x 1.9 1.99 1.999 ˝ 2.001 2.01 2.1
f (x) 0.20408 0.20040 0.20004 ˝ 0.19996 0.19960 0.19608

• So it is reasonable to suppose that

lim
xÑ2

x ´ 2
x2 + x ´ 6

= 0.2

Example 1.3.4

The previous two examples are nicely behaved in that the limits we tried to compute
actually exist. We now turn to two nastier examples9 in which the limits we are interested
in do not exist.

Example 1.3.5 (A bad example)

Consider the following function f (x) = sin(π/x). Find the limit as x Ñ 0 of f (x).
We should see something interesting happening close to x = 0 because f (x) is un-

defined there. Using your favourite graph-plotting software you can see that the graph
looks roughly like

9 Actually, they are good examples, but the functions in them are nastier.
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How to explain this? As x gets closer and closer to zero, π/x becomes larger and larger
(remember what the plot of y = 1/x looks like). So when you take sine of that number, it
oscillates faster and faster the closer you get to zero. Since the function does not approach
a single number as we bring x closer and closer to zero, the limit does not exist.

We write this as

lim
xÑ0

sin
(π

x

)
does not exist

It’s not very inventive notation, however it is clear. We frequently abbreviate “does not
exist” to “DNE” and rewrite the above as

lim
xÑ0

sin
(π

x

)
= DNE

Example 1.3.5

In the following example, the limit we are interested in does not exist. However the
way in which things go wrong is quite different from what we just saw.

Example 1.3.6

Consider the function

f (x) =

$

’

&

’

%

x x ă 2
´1 x = 2
x + 3 x ą 2

• The plot of this function looks like this
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• So let us plug in numbers close to 2.

x 1.9 1.99 1.999 ˝ 2.001 2.01 2.1
f (x) 1.9 1.99 1.999 ˝ 5.001 5.01 5.1

• This isn’t like before. Now when we approach from below, we seem to be getting
closer to 2, but when we approach from above we seem to be getting closer to 5.
Since we are not approaching the same number the limit does not exist.

lim
xÑ2

f (x) = DNE

Example 1.3.6

While the limit in the previous example does not exist, the example serves to introduce
the idea of “one-sided limits”. For example, we can say that

As x moves closer and closer to two from below the function approaches 2.

and similarly

As x moves closer and closer to two from above the function approaches 5.

We write

lim
xÑa´

f (x) = K

when the value of f (x) gets closer and closer to K when x ă a and x moves
closer and closer to a. Since the x-values are always less than a, we say that x
approaches a from below. This is also often called the left-hand limit since the
x-values lie to the left of a on a sketch of the graph.
We similarly write

lim
xÑa+

f (x) = L

when the value of f (x) gets closer and closer to L when x ą a and x moves closer
and closer to a. For similar reasons we say that x approaches a from above, and
sometimes refer to this as the right-hand limit.

Definition 1.3.7 (Informal definition of one-sided limits).

Note — be careful to include the superscript + and ´ when writing these limits. You
might also see the following notations:

lim
xÑa+

f (x) = lim
xÑa+

f (x) = lim
xÓa

f (x) = lim
xŒa

f (x) = L right-hand limit

lim
xÑa´

f (x) = lim
xÑa´

f (x) = lim
xÒa

f (x) = lim
xÕa

f (x) = L left-hand limit
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but please use with the notation in Definition 1.3.7 above.
Given these two similar notions of limits, when are they the same? The following

theorem tell us

lim
xÑa

f (x) = L if and only if lim
xÑa´

f (x) = L and lim
xÑa+

f (x) = L

Theorem 1.3.8 (Limits and one sided limits).

Notice that this is really two separate statements because of the “if and only if”

• If the limit of f (x) as x approaches a exists and is equal to L, then both the left-hand
and right-hand limits exist and are equal to L. AND,

• If the left-hand and right-hand limits as x approaches a exist and are equal, then the
limit as x approaches a exists and is equal to the one-sided limits.

That is — the limit of f (x) as x approaches a will only exist if it doesn’t matter which way
we approach a (either from left or right) AND if we get the same one-sided limits when
we approach from left and right, then the limit exists.

We can rephrase the above by writing the contrapositives10 of the above statements.

• If either of the left-hand and right-hand limits as x approaches a fail to exist, or if
they both exist but are different, then the limit as x approaches a does not exist.
AND,

• If the limit as x approaches a does not exist, then the left-hand and right-hand limits
are either different or at least one of them does not exist.

Here is another limit example

Example 1.3.9

Consider the following two functions and compute their limits and one-sided limits as x
approaches 1:

10 Given a statement of the form “If A then B”, the contrapositive is “If not B then not A”. They are logically
equivalent — if one is true then so is the other. We must take care not to confuse the contrapositive with
the converse. Given “If A then B”, the converse is “If B then A”. These are definitely not the same.
To see this consider the statement “If he is Shakespeare then he is dead.” The converse is “If he is
dead then he is Shakespeare” — clearly garbage since there are plenty of dead people who are not
Shakespeare. The contrapositive is “If he is not dead then he is not Shakespeare” — which makes much
more sense.
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These are a little different from our previous examples, in that we do not have formulas,
only the sketch. But we can still compute the limits.

• Function on the left — f (x):

lim
xÑ1´

f (x) = 2 lim
xÑ1+

f (x) = 2

so by the previous theorem

lim
xÑ1

f (x) = 2

• Function on the right — g(t):

lim
tÑ1´

g(t) = 2 and lim
tÑ1+

g(t) = ´2

so by the previous theorem

lim
tÑ1

g(t) = DNE

Example 1.3.9

We have seen 2 ways in which a limit does not exist — in one case the function oscil-
lated wildly, and in the other there was some sort of “jump” in the function, so that the
left-hand and right-hand limits were different.

There is a third way that we must also consider. To describe this, consider the following
four functions:

Figure 1.3.1.
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None of these functions are defined at x = a, nor do the limits as x approaches a exist.
However we can say more than just “the limits do not exist”.

Notice that the value of function 1 can be made bigger and bigger as we bring x closer
and closer to a. Similarly the value of the second function can be made arbitrarily large
and negative (i.e. make it as big a negative number as we want) by bringing x closer and
closer to a. Based on this observation we have the following definition.

We write

lim
xÑa

f (x) = +8

when the value of the function f (x) becomes arbitrarily large and positive as x
gets closer and closer to a, without being exactly a.
Similarly, we write

lim
xÑa

f (x) = ´8

when the value of the function f (x) becomes arbitrarily large and negative as x
gets closer and closer to a, without being exactly a.

Definition 1.3.10.

A good examples of the above is

lim
xÑ0

1
x2 = +8 lim

xÑ0
´

1
x2 = ´8

IMPORTANT POINT: Please do not think of “+8” and “´8” in these statements as
numbers. You should think of lim

xÑa
f (x) = +8 and lim

xÑa
f (x) = ´8 as special cases of

lim
xÑa

f (x) = DNE. The statement

lim
xÑa

f (x) = +8

does not say “the limit of f (x) as x approaches a is positive infinity”. It says “the func-
tion f (x) becomes arbitrarily large as x approaches a”. These are different statements;
remember that 8 is not a number11.

Now consider functions 3 and 4 in Figure 1.3.1. Here we can make the value of the
function as big and positive as we want (for function 3) or as big and negative as we want
(for function 4) but only when x approaches a from one side. With this in mind we can
construct similar notation and a similar definition:

11 One needs to be very careful making statements about infinity. At some point in our lives we get around
to asking ourselves “what is the biggest number”, and we realise there isn’t one. That is, we can go on
counting integer after integer, for ever and not stop. Indeed the set of integers is the first infinite thing
we really encounter. It is an example of a countably infinite set. The set of real-numbers is actually much
bigger and is uncountably infinite. In fact there are an infinite number of different sorts of infinity! Much
of the theory of infinite sets was developed by Georg Cantor; we mentioned him back in Section 0.2
and he is well worth googling.
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We write

lim
xÑa+

f (x) = +8

when the value of the function f (x) becomes arbitrarily large and positive as x
gets closer and closer to a from above (equivalently — from the right), without
being exactly a.
Similarly, we write

lim
xÑa+

f (x) = ´8

when the value of the function f (x) becomes arbitrarily large and negative as x
gets closer and closer to a from above (equivalently — from the right), without
being exactly a.
The notation

lim
xÑa´

f (x) = +8 lim
xÑa´

f (x) = ´8

has a similar meaning except that limits are approached from below / from the
left.

Definition 1.3.11.

So for function 3 we have

lim
xÑa´

f (x) = +8 lim
xÑa+

f (x) = some positive number

and for function 4

lim
xÑa´

f (x) = some positive number lim
xÑa+

f (x) = ´8

More examples:

Example 1.3.12

Consider the function

g(x) =
1

sin(x)

Find the one-sided limits of this function as x Ñ π.
Probably the easiest way to do this is to first plot the graph of sin(x) and 1/x and then

think carefully about the one-sided limits:
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• As x Ñ π from the left, sin(x) is a small positive number that is getting closer and
closer to zero. That is, as x Ñ π´, we have that sin(x) Ñ 0 through positive numbers
(i.e. from above). Now look at the graph of 1/x, and think what happens as we move
x Ñ 0+, the function is positive and becomes larger and larger.

So as x Ñ π from the left, sin(x) Ñ 0 from above, and so 1/ sin(x) Ñ +8.

• By very similar reasoning, as x Ñ π from the right, sin(x) is a small negative number
that gets closer and closer to zero. So as x Ñ π from the right, sin(x) Ñ 0 through
negative numbers (i.e. from below) and so 1/ sin(x) to ´8.

Thus

lim
xÑπ´

1
sin(x)

= +8 lim
xÑπ+

1
sin(x)

= ´8

Example 1.3.12

Again, we can make Definitions 1.3.10 and 1.3.11 into mathematically precise formal
definitions using techniques very similar to those in the optional Section 1.7. This is not
strictly necessary for this course.

Up to this point we explored limits by sketching graphs or plugging values into a cal-
culator. This was done to help build intuition, but it is not really the basis of a systematic
method for computing limits. We have also avoided more formal approaches12 since we
do not have time in the course to go into that level of detail and (arguably) we don’t need
that detail to achieve the aims of the course. Thankfully we can develop a more system-
atic approach based on the idea of building up complicated limits from simpler ones by
examining how limits interact with the basic operations of arithmetic.

1.4 Ĳ Calculating Limits with Limit Laws

Think back to the functions you know and the sorts of things you have been asked to
draw, factor and so on. Then they are all constructed from simple pieces, such as

12 The formal approaches are typically referred to as “epsilon-delta limits” or “epsilon-delta proofs” since
the symbols ϵ and δ are traditionally used throughout. Take a peek at Section 1.7 to see.
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• constants — c

• monomials — xn

• trigonometric functions — sin(x), cos(x) and tan(x)

These are the building blocks from which we construct functions. Soon we will add a
few more functions to this list, especially the exponential function and various inverse
functions.

We then take these building blocks and piece them together using arithmetic

• addition and subtraction — f (x) = g(x) + h(x) and f (x) = g(x) ´ h(x)

• multiplication — f (x) = g(x) ¨ h(x)

• division — f (x) = g(x)
h(x)

• substitution — f (x) = g(h(x)) — this is also called the composition of g with h.

The idea of building up complicated functions from simpler pieces was discussed in Sec-
tion 0.5.

What we will learn in this section is how to compute the limits of the basic building
blocks and then how we can compute limits of sums, products and so forth using “limit
laws”. This process allows us to compute limits of complicated functions, using very
simple tools and without having to resort to “plugging in numbers” or “closer and closer”
or “ϵ ´ δ arguments”.

In the examples we saw above, almost all the interesting limits happened at points
where the underlying function was badly behaved — where it jumped, was not defined
or blew up to infinity. In those cases we had to be careful and think about what was
happening. Thankfully most functions we will see do not have too many points at which
these sorts of things happen.

For example, polynomials do not have any nasty jumps and are defined everywhere
and do not “blow up”. If you plot them, they look smooth13. Polynomials and limits
behave very nicely together, and for any polynomial P(x) and any real number a we have
that

lim
xÑa

P(x) = P(a)

That is — to evaluate the limit we just plug in the number. We will build up to this result
over the next few pages.

Let us start with the two easiest limits14

Let a, c P R. The following two limits hold

lim
xÑa

c = c and lim
xÑa

x = a.

Theorem 1.4.1 (Easiest limits).

13 We have used this term in an imprecise way, but it does have a precise mathematical meaning.
14 Though it lies outside the scope of the course, you can find the formal ϵ-δ proof of this result at the end

of Section 1.7.
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Since we have not seen too many theorems yet, let us examine it carefully piece by
piece.

• Let a, c P R — just as was the case for definitions, we start a theorem by defining
terms and setting the scene. There is not too much scene to set: the symbols a and c
are real numbers.

• The following two limits hold — this doesn’t really contribute much to the state-
ment of the theorem, it just makes it easier to read.

• lim
xÑa

c = c — when we take the limit of a constant function (for example think of
c = 3), the limit is (unsurprisingly) just that same constant.

• lim
xÑa

x = a — as we noted above for general polynomials, the limit of the function

f (x) = x as x approaches a given point a, is just a. This says something quite obvious
— as x approaches a, x approaches a (if you are not convinced then sketch the graph).

Armed with only these two limits, we cannot do very much. But combining these
limits with some arithmetic we can do quite a lot. For a moment, take a step back from
limits for a moment and think about how we construct functions. To make the discussion
a little more precise think about how we might construct the function

h(x) =
2x ´ 3

x2 + 5x ´ 6

If we want to compute the value of the function at x = 2, then we would

• compute the numerator at x = 2

• compute the denominator at x = 2

• compute the ratio

Now to compute the numerator we

• take x and multiply it by 2

• subtract 3 to the result

While for the denominator

• multiply x by x

• multiply x by 5

• add these two numbers and subtract 6

This sequence of operations can be represented pictorially as the tree shown in Figure 1.4.1
below.
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Figure 1.4.1.

Such trees were discussed in Section 0.5 (now is not a bad time to quickly review that
section before proceeding). The point here is that in order to compute the value of the
function we just repeatedly add, subtract, multiply and divide constants and x.

To compute the limit of the above function at x = 2 we can do something very similar.
From the previous theorem we know how to compute

lim
xÑ2

c = c and lim
xÑ2

x = 2

and the next theorem will tell us how to stitch together these two limits using the arith-
metic we used to construct the function.

Let a, c P R, let f (x) and g(x) be defined for all x’s that lie in some interval about
a (but f , g need not be defined exactly at a).

lim
xÑa

f (x) = F lim
xÑa

g(x) = G

exist with F, G P R. Then the following limits hold

• lim
xÑa

( f (x) + g(x)) = F + G — limit of the sum is the sum of the limits.

• lim
xÑa

( f (x) ´ g(x)) = F ´ G — limit of the difference is the difference of the
limits.

• lim
xÑa

c f (x) = cF.

• lim
xÑa

( f (x) ¨ g(x)) = F ¨ G — limit of the product is the product of limits.

• If G ‰ 0 then lim
xÑa

f (x)
g(x)

=
F
G

and, in particular, lim
xÑa

1
g(x)

=
1
G

.

Note — be careful with this last one — the denominator cannot be zero.

Theorem 1.4.2 (Arithmetic of limits).
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The above theorem shows that limits interact very simply with arithmetic. If you are
asked to find the limit of a sum then the answer is just the sum of the limits. Similarly the
limit of a product is just the product of the limits.

How do we apply the above theorem to the rational function h(x) we defined above?
Here is a warm-up example:

Example 1.4.3

You are given two functions f , g (not explicitly) which have the following limits as x ap-
proaches 1:

lim
xÑ1

f (x) = 3 and lim
xÑ1

g(x) = 2

Using the above theorem we can compute

lim
xÑ1

3 f (x) = 3 ˆ 3 = 9

lim
xÑ1

3 f (x) ´ g(x) = 3 ˆ 3 ´ 2 = 7

lim
xÑ1

f (x)g(x) = 3 ˆ 2 = 6

lim
xÑ1

f (x)
f (x) ´ g(x)

=
3

3 ´ 2
= 3

Example 1.4.3

Another simple example

Example 1.4.4

Find lim
xÑ3

4x2
´ 1

We use the arithmetic of limits:

lim
xÑ3

4x2
´ 1 =

(
lim
xÑ3

4x2
)

´ lim
xÑ3

1 difference of limits

=

(
lim
xÑ3

4 ¨ lim
xÑ3

x2
)

´ lim
xÑ3

1 product of limits

= 4 ¨

(
lim
xÑ3

x2
)

´ 1 limit of constant

= 4 ¨

(
lim
xÑ3

x
)

¨

(
lim
xÑ3

x
)

´ 1 product of limits

= 4 ¨ 3 ¨ 3 ´ 1 limit of x
= 36 ´ 1
= 35

Example 1.4.4

This is an excruciating level of detail, but when you first use this theorem and try some
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examples it is a good idea to do things step by step by step until you are comfortable with
it.

Example 1.4.5

Yet another limit — compute lim
xÑ2

x
x ´ 1

.

To apply the arithmetic of limits, we need to examine numerator and denominator
separately and make sure the limit of the denominator is non-zero. Numerator first:

lim
xÑ2

x = 2 limit of x

and now the denominator:

lim
xÑ2

x ´ 1 =

(
lim
xÑ2

x
)

´

(
lim
xÑ2

1
)

difference of limits

= 2 ´ 1 limit of x and limit of constant = 1

Since the limit of the denominator is non-zero we can put it back together to get

lim
xÑ2

x
x ´ 1

=
lim
xÑ2

x

lim
xÑ2

(x ´ 1)

=
2
1

= 2

Example 1.4.5

In the next example we show that many different things can happen if the limit of the
denominator is zero.

Example 1.4.6 (Be careful with limits of ratios)

We must be careful when computing the limit of a ratio — it is the ratio of the limits ex-
cept when the limit of the denominator is zero. When the limit of the denominator is zero
Theorem 1.4.2 does not apply and a few interesting things can happen

• If the limit of the numerator is non-zero then the limit of the ratio does not exist

lim
xÑa

f (x)
g(x)

= DNE when lim
xÑa

f (x) ‰ 0 and lim
xÑa

g(x) = 0

For example, lim
xÑ0

1
x2 = DNE.

• If the limit of the numerator is zero then the above theorem does not give us enough
information to decide whether or not the limit exists. It is possible that

– the limit does not exist, eg. lim
xÑ0

x
x2 = lim

xÑ0

1
x
= DNE
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– the limit is ˘8, eg. lim
xÑ0

x2

x4 = lim
xÑ0

1
x2 = +8 or lim

xÑ0

´x2

x4 = lim
xÑ0

´1
x2 = ´8.

– the limit is zero, eg. lim
xÑ0

x2

x
= 0

– the limit exists and is non-zero, eg. lim
xÑ0

x
x
= 1

Now while the above examples are very simple and a little contrived they serve to illus-
trate the point we are trying to make — be careful if the limit of the denominator is zero.

Example 1.4.6

We now have enough theory to return to our rational function and compute its limit
as x approaches 2.

Example 1.4.7

Let h(x) =
2x ´ 3

x2 + 5x ´ 6
and find its limit as x approaches 2.

Since this is the limit of a ratio, we compute the limit of the numerator and denomina-
tor separately. Numerator first:

lim
xÑ2

2x ´ 3 =

(
lim
xÑ2

2x
)

´

(
lim
xÑ2

3
)

difference of limits

= 2 ¨

(
lim
xÑ2

x
)

´ 3 product of limits and limit of constant

= 2 ¨ 2 ´ 3 limits of x
= 1

Denominator next:

lim
xÑ2

x2 + 5x ´ 6 =

(
lim
xÑ2

x2
)
+

(
lim
xÑ2

5x
)

´

(
lim
xÑ2

6
)

sum of limits

=

(
lim
xÑ2

x
)

¨

(
lim
xÑ2

x
)
+ 5 ¨

(
lim
xÑ2

x
)

´ 6 product of limits and limit of constant

= 2 ¨ 2 + 5 ¨ 2 ´ 6 limits of x
= 8

Since the limit of the denominator is non-zero, we can obtain our result by taking the ratio
of the separate limits.

lim
xÑ2

2x ´ 3
x2 + 5x ´ 6

=
lim
xÑ2

2x ´ 3

lim
xÑ2

x2 + 5x ´ 6
=

1
8

The above works out quite simply. However, if we were to take the limit as x Ñ 1 then
things are a bit harder. The limit of the numerator is:

lim
xÑ1

2x ´ 3 = 2 ¨ 1 ´ 3 = ´1
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(we have not listed all the steps). And the limit of the denominator is

lim
xÑ1

x2 + 5x ´ 6 = 1 ¨ 1 + 5 ´ 6 = 0

Since the limit of the numerator is non-zero, while the limit of the denominator is zero,
the limit of the ratio does not exist.

lim
xÑ1

2x ´ 3
x2 + 5x ´ 6

= DNE

Example 1.4.7

It is IMPORTANT TO NOTE that it is not correct to write

lim
xÑ1

2x ´ 3
x2 + 5x ´ 6

=
´1
0

= DNE

Because we can only write

lim
xÑa

f (x)
g(x)

=
lim
xÑa

f (x)

lim
xÑa

g(x)
= something

when the limit of the denominator is non-zero (see Example 1.4.6 above).
With a little care you can use the arithmetic of limits to obtain the following rules for

limits of powers of functions and limits of roots of functions:

Let n be a positive integer, let a P R and let f be a function so that

lim
xÑa

f (x) = F

for some real number F. Then the following holds

lim
xÑa

( f (x))n =
(

lim
xÑa

f (x)
)n

= Fn

so that the limit of a power is the power of the limit. Similarly, if

• n is an even number and F ą 0, or

• n is an odd number and F is any real number

then

lim
xÑa

( f (x))1/n =
(

lim
xÑa

f (x)
)1/n

= F1/n

More generally15, if F ą 0 and p is any real number,

lim
xÑa

( f (x))p =
(

lim
xÑa

f (x)
)p

= Fp

Theorem 1.4.8 (More arithmetic of limits — powers and roots).
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Notice that we have to be careful when taking roots of limits that might be negative
numbers. To see why, consider the case n = 2, the limit

lim
xÑ4

x1/2 = 41/2 = 2

lim
xÑ4

(´x)1/2 = (´4)1/2 = not a real number

In order to evaluate such limits properly we need to use complex numbers which are
beyond the scope of this text.

Also note that the notation x1/2 refers to the positive square root of x. While 2 and (´2)
are both square-roots of 4, the notation 41/2 means 2. This is something we must be careful
of16.

So again — let us do a few examples and carefully note what we are doing.

Example 1.4.9

lim
xÑ2

(4x2
´ 3)1/3 =

(
(lim

xÑ2
4x2) ´ (lim

xÑ2
3)
)1/3

=
(

4 ¨ 22
´ 3
)1/3

= (16 ´ 3)1/3

= 131/3

Example 1.4.9

By combining the last few theorems we can make the evaluation of limits of polyno-
mials and rational functions much easier:

Let a P R, let P(x) be a polynomial and let R(x) be a rational function. Then

lim
xÑa

P(x) = P(a)

and provided R(x) is defined at x = a then

lim
xÑa

R(x) = R(a)

If R(x) is not defined at x = a then we are not able to apply this result.

Theorem 1.4.10 (Limits of polynomials and rational functions).

15 You may not know the definition of the power bp when p is not a rational number, so here it is. If b ą 0
and p is any real number, then bp is the limit of br as r approaches p through rational numbers. We
won’t do so here, but it is possible to prove that the limit exists.

16 Like ending sentences in prepositions — “This is something up with which we will not put.” This quote
is attributed to Churchill though there is some dispute as to whether or not he really said it.
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So the previous examples are now much easier to compute:

lim
xÑ2

2x ´ 3
x2 + 5x ´ 6

=
4 ´ 3

4 + 10 ´ 6
=

1
8

lim
xÑ2

(4x2
´ 1) = 16 ´ 1 = 15

lim
xÑ2

x
x ´ 1

=
2

2 ´ 1
= 2

It is clear that limits of polynomials are very easy, while those of rational functions are
easy except when the denominator might go to zero. We have seen examples where the
resulting limit does not exist, and some where it does. We now work to explain this more
systematically. The following example demonstrates that it is sometimes possible to take
the limit of a rational function to a point at which the denominator is zero. Indeed we
must be able to do exactly this in order to be able to define derivatives in the next chapter.

Example 1.4.11

Consider the limit

lim
xÑ1

x3 ´ x2

x ´ 1
.

If we try to apply the arithmetic of limits then we compute the limits of the numerator
and denominator separately

lim
xÑ1

x3
´ x2 = 1 ´ 1 = 0 (1.4.1)

lim
xÑ1

x ´ 1 = 1 ´ 1 = 0 (1.4.2)

Since the denominator is zero, we cannot apply our theorem and we are, for the moment,
stuck. However, there is more that we can do here — the hint is that the numerator and
denominator both approach zero as x approaches 1. This means that there might be some-
thing we can cancel.

So let us play with the expression a little more before we take the limit:

x3 ´ x2

x ´ 1
=

x2(x ´ 1)
x ´ 1

= x2 provided x ‰ 1.

So what we really have here is the following function

x3 ´ x2

x ´ 1
=

#

x2 x ‰ 1
undefined x = 1

If we plot the above function the graph looks exactly the same as y = x2 except that the
function is not defined at x = 1 (since at x = 1 both numerator and denominator are zero).
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When we compute a limit as x Ñ a, the value of the function exactly at x = a is irrelevant.
We only care what happens to the function as we bring x very close to a. So for the above
problem we can write

x3 ´ x2

x ´ 1
= x2 when x is close to 1 but not at x = 1

So the limit as x Ñ 1 of the function is the same as the limit lim
xÑ1

x2 since the functions are

the same except exactly at x = 1. By this reasoning we get

lim
xÑ1

x3 ´ x2

x ´ 1
= lim

xÑ1
x2 = 1

Example 1.4.11

The reasoning in the above example can be made more general:

If f (x) = g(x) except when x = a then lim
xÑa

f (x) = lim
xÑa

g(x) provided the limit of
g exists.

Theorem 1.4.12.

How do we know when to use this theorem? The big clue is that when we try to
compute the limit in a naive way, we end up with 0

0 . We know that 0
0 does not make

sense, but it is an indication that there might be a common factor between numerator
and denominator that can be cancelled. In the previous example, this common factor was
(x ´ 1).

Example 1.4.13

Using this idea compute

lim
hÑ0

(1 + h)2 ´ 1
h

• First we should check that we cannot just substitute h = 0 into this — clearly we
cannot because the denominator would be 0.
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• But we should also check the numerator to see if we have 0
0 , and we see that the

numerator gives us 1 ´ 1 = 0.

• Thus we have a hint that there is a common factor that we might be able to cancel.
So now we look for the common factor and try to cancel it.

(1 + h)2 ´ 1
h

=
1 + 2h + h2 ´ 1

h
expand

=
2h + h2

h
=

h(2 + h)
h

factor and then cancel

= 2 + h

• Thus we really have that

(1 + h)2 ´ 1
h

=

#

2 + h h ‰ 0
undefined h = 0

and because of this

lim
hÑ0

(1 + h)2 ´ 1
h

= lim
hÑ0

2 + h

= 2

Example 1.4.13

Of course — we have written everything out in great detail here and that is way more than
is required for a solution to such a problem. Let us do it again a little more succinctly.

Example 1.4.14

Compute the following limit:

lim
hÑ0

(1 + h)2 ´ 1
h

If we try to use the arithmetic of limits, then we see that the limit of the numerator and
the limit of the denominator are both zero. Hence we should try to factor them and cancel
any common factor. This gives

lim
hÑ0

(1 + h)2 ´ 1
h

= lim
hÑ0

1 + 2h + h2 ´ 1
h

= lim
hÑ0

2 + h

= 2

Example 1.4.14

Notice that even though we did this example carefully above, we have still written some
text in our working explaining what we have done. You should always think about the
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reader and if in doubt, put in more explanation rather than less. We could make the above
example even more terse

Example 1.4.15

Compute the following limit:

lim
hÑ0

(1 + h)2 ´ 1
h

Numerator and denominator both go to zero as h Ñ 0. So factor and simplify:

lim
hÑ0

(1 + h)2 ´ 1
h

= lim
hÑ0

1 + 2h + h2 ´ 1
h

= lim
hÑ0

2 + h = 2

Example 1.4.15

A slightly harder one now

Example 1.4.16

Compute the limit

lim
xÑ0

x
?

1 + x ´ 1

If we try to use the arithmetic of limits we get

lim
xÑ0

x = 0

lim
xÑ0

?
1 + x ´ 1 =

b

lim
xÑ0

1 + x ´ 1 = 1 ´ 1 = 0

So doing the naive thing we’d get 0/0. This suggests a common factor that can be can-
celled. Since the numerator and denominator are not polynomials we have to try other
tricks17 . We can simplify the denominator

?
1 + x ´ 1 a lot, and in particular eliminate

17 While these tricks are useful (and even cute18), Taylor polynomials (see Section 3.4) give us a more
systematic way of approaching this problem.

18 Mathematicians tend to have quite strong opinions on the beauty of mathematics. For example, Paul
Erdös19said “Why are numbers beautiful? It’s like asking why is Beethoven’s Ninth Symphony beauti-
ful. If you don’t see why, someone can’t tell you. I know numbers are beautiful. If they aren’t beautiful,
nothing is.”.

19 Arguably the most prolific mathematician of the 20th century — definitely worth a google. The authors
do not know his opinion on nested footnotes20.

20 Nested footnotes are generally frowned upon, since they can get quite contorted; see XKCD-1208 and
also the novel “House of Leaves” by Mark Z. Danielewski.
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the square root, by multiplying it by its conjugate
?

1 + x + 1.

x
?

1 + x ´ 1
=

x
?

1 + x ´ 1
ˆ

?
1 + x + 1

?
1 + x + 1

multiply by
conjugate
conjugate

= 1

=
x
(?

1 + x + 1
)

(?
1 + x ´ 1

) (?
1 + x + 1

) bring things together

=
x
(?

1 + x + 1
)

(?
1 + x

)2
´ 1 ¨ 1

since (a ´ b)(a + b) = a2
´ b2

=
x
(?

1 + x + 1
)

1 + x ´ 1
clean up a little

=
x
(?

1 + x + 1
)

x
=

?
1 + x + 1 cancel the x

So now we have

lim
xÑ0

x
?

1 + x ´ 1
= lim

xÑ0

?
1 + x + 1

=
?

1 + 0 + 1 = 2

Example 1.4.16

How did we know what to multiply by? Our function was of the form

a
?

b ´ c

so, to eliminate the square root from the denominator, we employ a trick — we multiply
by 1. Of course, multiplying by 1 doesn’t do anything. But if you multiply by 1 carefully
you can leave the value the same, but change the form of the expression. More precisely

a
?

b ´ c
=

a
?

b ´ c
¨ 1

=
a

?
b ´ c

¨

?
b + c

?
b + c

loomoon

=1

=
a
(?

b + c
)

(?
b ´ c

) (?
b + c

) expand denominator carefully

=
a
(?

b + c
)

?
b ¨

?
b ´ c

?
b + c

?
b ´ c ¨ c

do some cancellation

=
a
(?

b + c
)

b ´ c2
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Now the numerator contains roots, but the denominator is just a polynomial.
Before we move on to limits at infinity, there is one more theorem to see. While the

scope of its application is quite limited, it can be extremely useful. It is called a sandwich
theorem or a squeeze theorem for reasons that will become apparent.

Sometimes one is presented with an unpleasant ugly function such as

f (x) = x2 sin(π/x)

It is a fact of life, that not all the functions that are encountered in mathematics will be
elegant and simple; this is especially true when the mathematics gets applied to real world
problems. One just has to work with what one gets. So how can we compute

lim
xÑ0

x2 sin(π/x)?

Since it is the product of two functions, we might try

lim
xÑ0

x2 sin(π/x) =
(

lim
xÑ0

x2
)

¨

(
lim
xÑ0

sin(π/x)
)

= 0 ¨

(
lim
xÑ0

sin(π/x)
)

= 0

But we just cheated — we cannot use the arithmetic of limits theorem here, because the
limit

lim
xÑ0

sin(π/x) = DNE

does not exist. Now we did see the function sin(π/x) before (in Example 1.3.5), so you
should go back and look at it again. Unfortunately the theorem “the limit of a product is
the product of the limits” only holds when the limits you are trying to multiply together
actually exist. So we cannot use it.

However, we do see that the function naturally decomposes into the product of two
pieces — the functions x2 and sin(π/x). We have sketched the two functions in the figure
on the left below.

Figure 1.4.2.
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While x2 is a very well behaved function and we know quite a lot about it, the function
sin(π/x) is quite ugly. One of the few things we can say about it is the following

´1 ď sin(π/x) ď 1 provided x ‰ 0

But if we multiply this expression by x2 we get (because x2 ě 0)

´x2
ď x2 sin(π/x) ď x2 provided x ‰ 0

and we have sketched the result in the figure above (on the right). So the function we are
interested in is squeezed or sandwiched between the functions x2 and ´x2.

If we focus in on the picture close to x = 0 we see that x approaches 0, the functions
x2 and ´x2 both approach 0. Further, because x2 sin(π/x) is sandwiched between them,
it seems that it also approaches 0.

The following theorem tells us that this is indeed the case:

Let a P R and let f , g, h be three functions so that

f (x) ď g(x) ď h(x)

for all x in an interval around a, except possibly exactly at x = a. Then if

lim
xÑa

f (x) = lim
xÑa

h(x) = L

then it is also the case that

lim
xÑa

g(x) = L

Theorem 1.4.17 (Squeeze theorem (or sandwich theorem or pinch theorem)).

Using the above theorem we can compute the limit we want and write it up nicely

Example 1.4.18

Compute the limit

lim
xÑ0

x2 sin(π/x)

Since ´1 ď sin(θ) ď 1 for all real numbers θ, we have

´1 ď sin(π/x) ď 1 for all x ‰ 0

Multiplying the above by x2 we see that

´x2
ď x2 sin(π/x) ď x2 for all x ‰ 0

Since lim
xÑ0

x2 = lim
xÑ0

(´x2) = 0 by the sandwich (or squeeze or pinch) theorem we have

lim
xÑ0

x2 sin(π/x) = 0
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Example 1.4.18

Notice how we have used “words”. We have remarked on this several times already in
the text, but we will keep mentioning it. It is okay to use words in your answers to maths
problems — and you should do so! These let the reader know what you are doing and
help you understand what you are doing.

Another sandwich theorem example

Example 1.4.19

Let f (x) be a function such that 1 ď f (x) ď x2 ´ 2x + 2. What is lim
xÑ1

f (x)?

We are already supplied with an inequality, so it is likely that it is going to help us. We
should examine the limits of each side to see if they are the same:

lim
xÑ1

1 = 1

lim
xÑ1

x2
´ 2x + 2 = 1 ´ 2 + 2 = 1

So we see that the function f (x) is trapped between two functions that both approach 1 as
x Ñ 1. Hence by the sandwich / pinch / squeeze theorem, we know that

lim
xÑ1

f (x) = 1

Example 1.4.19

To get some intuition as to why the squeeze theorem is true, consider when x is very
very close to a. In particular, consider when x is sufficiently close to a that we know h(x)
is within 10´6 of L and that f (x) is also within 10´6 of L. That is

|h(x) ´ L| ă 10´6 and | f (x) ´ L| ă 10´6.

This means that

L ´ 10´6
ă f (x) ď h(x) ă L + 10´6

since we know that f (x) ď h(x).
But now by the hypothesis of the squeeze theorem we know that f (x) ď g(x) ď h(x)

and so we have

L ´ 10´6
ă f (x) ď g(x) ď h(x) ă L + 10´6

And thus we know that

L ´ 10´6
ď g(x) ď L + 10´6 (1.4.3)

That is g(x) is also within 10´6 of L.
In this argument our choice of 10´6 was arbitrary, so we can really replace 10´6 with

any small number we like. Hence we know that we can force g(x) as close to L as we like,
by bringing x sufficiently close to a. We give a more formal and rigorous version of this
argument at the end of Section 1.9.
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1.5 Ĳ Limits at Infinity

Up until this point we have discussed what happens to a function as we move its input x
closer and closer to a particular point a. For a great many applications of limits we need
to understand what happens to a function when its input becomes extremely large — for
example what happens to a population at a time far in the future.

The definition of a limit at infinity has a similar flavour to the definition of limits at
finite points that we saw above, but the details are a little different. We also need to
distinguish between positive and negative infinity. As x becomes very large and positive it
moves off towards +8 but when it becomes very large and negative it moves off towards
´8.

Again we give an informal definition; the full formal definition can be found in (the
optional) Section 1.8 near the end of this chapter.

We write

lim
xÑ8

f (x) = L

when the value of the function f (x) gets closer and closer to L as we make x
larger and larger and positive.
Similarly we write

lim
xÑ´8

f (x) = L

when the value of the function f (x) gets closer and closer to L as we make x
larger and larger and negative.

Definition 1.5.1 (Limits at infinity — informal).

Example 1.5.2

Consider the two functions depicted below

The dotted horizontal lines indicate the behaviour as x becomes very large. The function
on the left has limits as x Ñ 8 and as x Ñ ´8 since the function “settles down” to a
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particular value. On the other hand, the function on the right does not have a limit as
x Ñ ´8 since the function just keeps getting bigger and bigger.

Example 1.5.2

Just as was the case for limits as x Ñ a we will start with two very simple building
blocks and build other limits from those.

Let c P R then the following limits hold

lim
xÑ8

c = c lim
xÑ´8

c = c

lim
xÑ8

1
x
= 0 lim

xÑ´8

1
x
= 0

Theorem 1.5.3.

Again, these limits interact nicely with standard arithmetic:

Let f (x), g(x) be two functions for which the limits

lim
xÑ8

f (x) = F lim
xÑ8

g(x) = G

exist. Then the following limits hold

lim
xÑ8

f (x) ˘ g(x) = F ˘ G

lim
xÑ8

f (x)g(x) = FG

lim
xÑ8

f (x)
g(x)

=
F
G

provided G ‰ 0

and for real numbers p

lim
xÑ8

f (x)p = Fp provided Fp and f (x)p are defined for all x

The analogous results hold for limits to ´8.

Theorem 1.5.4 (Arithmetic of limits at infinity).

Note that, as was the case in Theorem 1.4.8, we need a little extra care with powers of
functions. We must avoid taking square roots of negative numbers, or indeed any even
root of a negative number21.

21 To be more precise, there is no real number x so that xeven power is a negative number. Hence we cannot
take the even-root of a negative number and express it as a real number. This is precisely what complex
numbers allow us to do, but alas there is not space in the course for us to explore them.
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Hence we have for all rational r ą 0

lim
xÑ8

1
xr = 0

but we have to be careful with

lim
xÑ´8

1
xr = 0

This is only true if the denominator of r is not an even number22.
For example

• lim
xÑ8

1
x1/2 = 0, but lim

xÑ´8

1
x1/2 does not exist, because x1/2 is not defined for x ă 0.

• On the other hand, x4/3 is defined for negative values of x and lim
xÑ´8

1
x4/3 = 0.

Our first application of limits at infinity will be to examine the behaviour of a rational
function for very large x. To do this we use a “trick”.

Example 1.5.5

Compute the following limit:

lim
xÑ8

x2 ´ 3x + 4
3x2 + 8x + 1

As x becomes very large, it is the x2 term that will dominate in both the numerator and
denominator and the other bits become irrelevant. That is, for very large x, x2 is much
much larger than x or any constant. So we pull out these dominant parts

x2 ´ 3x + 4
3x2 + 8x + 1

=
x2
(

1 ´ 3
x + 4

x2

)

x2
(

3 + 8
x + 1

x2

)

=
1 ´ 3

x + 4
x2

3 + 8
x + 1

x2

remove the common factors

lim
xÑ8

x2 ´ 3x + 4
3x2 + 8x + 1

= lim
xÑ8

1 ´ 3
x + 4

x2

3 + 8
x + 1

x2

=

lim
xÑ8

(
1 ´

3
x
+

4
x2

)

lim
xÑ8

(
3 +

8
x
+

1
x2

) arithmetic of limits

=
lim
xÑ8

1 ´ lim
xÑ8

3
x
+ lim

xÑ8

4
x2

lim
xÑ8

3 + lim
xÑ8

8
x
+ lim

xÑ8

1
x2

more arithmetic of limits

=
1 + 0 + 0
3 + 0 + 0

=
1
3

22 where we write r = p
q with p, q integers with no common factors. For example, r = 6

14 should be written

as r = 3
7 when considering this rule.
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Example 1.5.5

The following one gets a little harder

Example 1.5.6

Find the limit as x Ñ 8 of
?

4x2+1
5x´1

We use the same trick — try to work out what is the biggest term in the numerator and
denominator and pull it to one side.

• The denominator is dominated by 5x.

• The biggest contribution to the numerator comes from the 4x2 inside the square-
root. When we pull x2 outside the square-root it becomes x, so the numerator is
dominated by x ¨

?
4 = 2x

• To see this more explicitly rewrite the numerator

a

4x2 + 1 =
b

x2(4 + 1/x2) =
?

x2
a

4 + 1/x2 = x
a

4 + 1/x2.

• Thus the limit as x Ñ 8 is

lim
xÑ8

?
4x2 + 1
5x ´ 1

= lim
xÑ8

x
a

4 + 1/x2

x(5 ´ 1/x)

= lim
xÑ8

a

4 + 1/x2

5 ´ 1/x

=
2
5

Example 1.5.6

Now let us also think about the limit of the same function,
?

4x2+1
5x´1 , as x Ñ ´8. There

is something subtle going on because of the square-root. First consider the function23

h(t) =
?

t2

Evaluating this at t = 7 gives

h(7) =
?

72 =
?

49 = 7

We’ll get much the same thing for any t ě 0. For any t ě 0, h(t) =
?

t2 returns exactly t.
However now consider the function at t = ´3

h(´3) =
b

(´3)2 =
?

9 = 3 = ´(´3)

23 Just to change things up let’s use t and h(t) instead of the ubiquitous x and f (x).
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that is the function is returning ´1 times the input.
This is because when we defined ? , we defined it to be the positive square-root. i.e.

the function
?

t can never return a negative number. So being more careful

h(t) =
?

t2 = |t|

Where the |t| is the absolute value of t. You are perhaps used to thinking of absolute value
as “remove the minus sign”, but this is not quite correct. Let’s sketch the function

Figure 1.5.1.

It is a piecewise function defined by

|x| =

#

x x ě 0
´x x ă 0

Hence our function h(t) is really

h(t) =
?

t2 =

#

t t ě 0
´t t ă 0

So that when we evaluate h(´7) it is

h(´7) =
b

(´7)2 =
?

49 = 7 = ´(´7)

We are now ready to examine the limit as x Ñ ´8 in our previous example. Mostly it is
copy and paste from above.

Example 1.5.7

Find the limit as x Ñ ´8 of
?

4x2+1
5x´1

We use the same trick — try to work out what is the biggest term in the numerator and
denominator and pull it to one side. Since we are taking the limit as x Ñ ´8 we should
think of x as a large negative number.

• The denominator is dominated by 5x.

• The biggest contribution to the numerator comes from the 4x2 inside the square-root.
When we pull the x2 outside a square-root it becomes |x| = ´x (since we are taking
the limit as x Ñ ´8), so the numerator is dominated by ´x ¨

?
4 = ´2x
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• To see this more explicitly rewrite the numerator
a

4x2 + 1 =
b

x2(4 + 1/x2) =
?

x2
a

4 + 1/x2

= |x|
a

4 + 1/x2 and since x ă 0 we have

= ´x
a

4 + 1/x2

• Thus the limit as x Ñ ´8 is

lim
xÑ´8

?
4x2 + 1
5x ´ 1

= lim
xÑ´8

´x
a

4 + 1/x2

x(5 ´ 1/x)

= lim
xÑ´8

´
a

4 + 1/x2

5 ´ 1/x

= ´
2
5

Example 1.5.7

So the limit as x Ñ ´8 is almost the same but we gain a minus sign. This is definitely
not the case in general — you have to think about each example separately.

Here is a sketch of the function in question.

Figure 1.5.2.

Example 1.5.8

Compute the following limit:

lim
xÑ8

(
x7/5

´ x
)

In this case we cannot use the arithmetic of limits to write this as

lim
xÑ8

(
x7/5

´ x
)
=
(

lim
xÑ8

x7/5
)

´

(
lim
xÑ8

x
)

= 8 ´ 8

because the limits do not exist. We can only use the limit laws when the limits exist. So
we should go back and think some more.
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When x is very large, x7/5 = x ¨ x2/5 will be much larger than x, so the x7/5 term will
dominate the x term. So factor out x7/5 and rewrite it as

x7/5
´ x = x7/5

(
1 ´

1
x2/5

)

Consider what happens to each of the factors as x Ñ 8

• For large x, x7/5 ą x (this is actually true for any x ą 1). In the limit as x Ñ +8,
x becomes arbitrarily large and positive, and x7/5 must be bigger still, so it follows
that

lim
xÑ8

x7/5 = +8.

• On the other hand, (1 ´ x´2/5) becomes closer and closer to 1 — we can use the
arithmetic of limits to write this as

lim
xÑ8

(1 ´ x´2/5) = lim
xÑ8

1 ´ lim
xÑ8

x´2/5 = 1 ´ 0 = 1

So the product of these two factors will be come larger and larger (and positive) as x
moves off to infinity. Hence we have

lim
xÑ8

x7/5
(

1 ´ 1/x2/5
)
= +8

Example 1.5.8

But remember +8 and ´8 are not numbers; the last equation in the example is shorthand
for “the function becomes arbitrarily large”.

In the previous section we saw that finite limits and arithmetic interact very nicely (see
Theorems 1.4.2 and 1.4.8). This enabled us to compute the limits of more complicated
function in terms of simpler ones. When limits of functions go to plus or minus infinity
we are quite a bit more restricted in what we can deduce. The next theorem states some
results concerning the sum, difference, ratio and product of infinite limits — unfortunately
in many cases we cannot make general statements and the results will depend on the
details of the problem at hand.
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Let a, c, H P R and let f , g, h be functions defined in an interval around a (but
they need not be defined at x = a), so that

lim
xÑa

f (x) = +8 lim
xÑa

g(x) = +8 lim
xÑa

h(x) = H

• lim
xÑa

( f (x) + g(x)) = +8

• lim
xÑa

( f (x) + h(x)) = +8

• lim
xÑa

( f (x) ´ g(x)) undetermined

• lim
xÑa

( f (x) ´ h(x)) = +8

• lim
xÑa

c f (x) =

$

’

&

’

%

+8 c ą 0
0 c = 0
´8 c ă 0

• lim
xÑa

( f (x) ¨ g(x)) = +8.

• lim
xÑa

f (x)h(x) =

$

’

&

’

%

+8 H ą 0
´8 H ă 0
undetermined H = 0

• lim
xÑa

f (x)
g(x)

undetermined

• lim
xÑa

f (x)
h(x)

=

$

’

&

’

%

+8 H ą 0
´8 H ă 0
undetermined H = 0

• lim
xÑa

h(x)
f (x)

= 0

• lim
xÑa

f (x)p =

$

’

&

’

%

+8 p ą 0
0 p ă 0
1 p = 0

Theorem 1.5.9 (Arithmetic of infinite limits).

Note that by “undetermined” we mean that the limit may or may not exist, but cannot
be determined from the information given in the theorem. See Example 1.4.6 for an exam-
ple of what we mean by “undetermined”. Additionally consider the following example.

Example 1.5.10
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Consider the following 3 functions:

f (x) = x´2 g(x) = 2x´2 h(x) = x´2
´ 1.

Their limits as x Ñ 0 are:

lim
xÑ0

f (x) = +8 lim
xÑ0

g(x) = +8 lim
xÑ0

h(x) = +8.

Say we want to compute the limit of the difference of two of the above functions as x Ñ 0.
Then the previous theorem cannot help us. This is not because it is too weak, rather it is
because the difference of two infinite limits can be, either plus infinity, minus infinity or
some finite number depending on the details of the problem. For example,

lim
xÑ0

( f (x) ´ g(x)) = lim
xÑ0

´x´2 = ´8

lim
xÑ0

( f (x) ´ h(x)) = lim
xÑ0

1 = 1

lim
xÑ0

(g(x) ´ h(x)) = lim
xÑ0

x´2 + 1 = +8

Example 1.5.10

1.6 Ĳ Continuity

We have seen that computing the limits some functions — polynomials and rational func-
tions — is very easy because

lim
xÑa

f (x) = f (a).

That is, the limit as x approaches a is just f (a). Roughly speaking, the reason we can
compute the limit this way is that these functions do not have any abrupt jumps near a.

Many other functions have this property, sin(x) for example. A function with this
property is called “continuous” and there is a precise mathematical definition for it. If
you do not recall interval notation, then now is a good time to take a quick look back at
Definition 0.3.5.

A function f (x) is continuous at a if

lim
xÑa

f (x) = f (a).

If a function is not continuous at a then it is said to be discontinuous at a.
When we write that f is continuous without specifying a point, then typically
this means that f is continuous at a for all a P R.
When we write that f (x) is continuous on the open interval (a, b) then the func-
tion is continuous at every point c satisfying a ă c ă b.

Definition 1.6.1.
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So if a function is continuous at x = a we immediately know that

• f (a) exists

• lim
xÑa´

exists and is equal to f (a), and

• lim
xÑa+

exists and is equal to f (a).

§§ Quick Aside — One-sided Continuity

Notice in the above definition of continuity on an interval (a, b) we have carefully avoided
saying anything about whether or not the function is continuous at the endpoints of the
interval — i.e. is f (x) continuous at x = a or x = b. This is because talking of continuity
at the endpoints of an interval can be a little delicate.

In many situations we will be given a function f (x) defined on a closed interval [a, b].
For example, we might have:

f (x) =
x + 1
x + 2

for x P [0, 1].

For any 0 ď x ď 1 we know the value of f (x). However for x ă 0 or x ą 1 we know
nothing about the function — indeed it has not been defined.

So now, consider what it means for f (x) to be continuous at x = 0. We need to have

lim
xÑ0

f (x) = f (0),

however this implies that the one-sided limits

lim
xÑ0+

f (x) = f (0) and lim
xÑ0´

f (x) = f (0)

Now the first of these one-sided limits involves examining the behaviour of f (x) for x ą 0.
Since this involves looking at points for which f (x) is defined, this is something we can
do. On the other hand the second one-sided limit requires us to understand the behaviour
of f (x) for x ă 0. This we cannot do because the function hasn’t been defined for x ă 0.

One way around this problem is to generalise the idea of continuity to one-sided con-
tinuity, just as we generalised limits to get one-sided limits.

A function f (x) is continuous from the right at a if

lim
xÑa+

f (x) = f (a).

Similarly a function f (x) is continuous from the left at a if

lim
xÑa´

f (x) = f (a)

Definition 1.6.2.
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Using the definition of one-sided continuity we can now define what it means for a
function to be continuous on a closed interval.

A function f (x) is continuous on the closed interval [a, b] when

• f (x) is continuous on (a, b),

• f (x) is continuous from the right at a, and

• f (x) is continuous from the left at b.

Note that the last two conditions are equivalent to

lim
xÑa+

f (x) = f (a) and lim
xÑb´

f (x) = f (b).

Definition 1.6.3.

§§ Back to the Main Text

We already know from our work above that polynomials are continuous, and that rational
functions are continuous at all points in their domains — i.e. where their denominators
are non-zero. As we did for limits, we will see that continuity interacts “nicely” with
arithmetic. This will allow us to construct complicated continuous functions from simpler
continuous building blocks (like polynomials).

But first, a few examples. . .

Example 1.6.4

Consider the functions drawn below

These are

f (x) =

#

x x ă 1
x + 2 x ě 1

g(x) =

#

1/x2 x ‰ 0
0 x = 0

h(x) =

#

x3´x2

x´1 x ‰ 1
0 x = 1

Determine where they are continuous and discontinuous:

• When x ă 1 then f (x) is a straight line (and so a polynomial) and so it is continuous
at every point x ă 1. Similarly when x ą 1 the function is a straight line and so it is

76
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continuous at every point x ą 1. The only point which might be a discontinuity is at
x = 1. We see that the one sided limits are different. Hence the limit at x = 1 does
not exist and so the function is discontinuous at x = 1.

But note that that f (x) is continuous from one side — which?

• The middle case is much like the previous one. When x ‰ 0 the g(x) is a rational
function and so is continuous everywhere on its domain (which is all reals except
x = 0). Thus the only point where g(x) might be discontinuous is at x = 0. We see
that neither of the one-sided limits exist at x = 0, so the limit does not exist at x = 0.
Hence the function is discontinuous at x = 0.

• We have seen the function h(x) before. By the same reasoning as above, we know it
is continuous except at x = 1 which we must check separately.

By definition of h(x), h(1) = 0. We must compare this to the limit as x Ñ 1. We did
this before.

x3 ´ x2

x ´ 1
=

x2(x ´ 1)
x ´ 1

= x2

So limxÑ1
x3´x2

x´1 = limxÑ1 x2 = 1 ‰ h(1). Hence h is discontinuous at x = 1.

Example 1.6.4

This example illustrates different sorts of discontinuities:

• The function f (x) has a “jump discontinuity” because the function “jumps” from
one finite value on the left to another value on the right.

• The second function, g(x), has an “infinite discontinuity” since lim f (x) = +8.

• The third function, h(x), has a “removable discontinuity” because we could make
the function continuous at that point by redefining the function at that point. i.e.
setting h(1) = 1. That is

new function h(x) =

#

x3´x2

x´1 x ‰ 1
1 x = 1

Showing a function is continuous can be a pain, but just as the limit laws help us
compute complicated limits in terms of simpler limits, we can use them to show that
complicated functions are continuous by breaking them into simpler pieces.
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Let a, c P R and let f (x) and g(x) be functions that are continuous at a. Then the
following functions are also continuous at x = a:

• f (x) + g(x) and f (x) ´ g(x),

• c f (x) and f (x)g(x), and

• f (x)
g(x) provided g(a) ‰ 0.

Theorem 1.6.5 (Arithmetic of continuity).

Above we stated that polynomials and rational functions are continuous (being care-
ful about domains of rational functions — we must avoid the denominators being zero)
without making it a formal statement. This is easily fixed. . .

Let c P R. The functions

f (x) = x g(x) = c

are continuous everywhere on the real line

Lemma 1.6.6.

This isn’t quite the result we wanted (that’s a couple of lines below) but it is a small
result that we can combine with the arithmetic of limits to get the result we want. Such
small helpful results are called “lemmas” and they will arise more as we go along.

Now since we can obtain any polynomial and any rational function by carefully adding,
subtracting, multiplying and dividing the functions f (x) = x and g(x) = c, the above
lemma combines with the “arithmetic of continuity” theorem to give us the result we
want:

Every polynomial is continuous everywhere. Similarly every rational function is
continuous except where its denominator is zero (i.e. on all its domain).

Theorem 1.6.7 (Continuity of polynomials and rational functions).

With some more work this result can be extended to wider families of functions:
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The following functions are continuous everywhere in their domains

• polynomials, rational functions

• roots and powers

• trig functions and their inverses

• exponential and the logarithm

Theorem 1.6.8.

We haven’t encountered inverse trigonometric functions, nor exponential functions
or logarithms, but we will see them in the next chapter. For the moment, just file the
information away.

Using a combination of the above results you can show that many complicated func-
tions are continuous except at a few points (usually where a denominator is equal to zero).

Example 1.6.9

Where is the function f (x) = sin(x)
2+cos(x) continuous?

We just break things down into pieces and then put them back together keeping track
of where things might go wrong.

• The function is a ratio of two pieces — so check if the numerator is continuous, the
denominator is continuous, and if the denominator might be zero.

• The numerator is sin(x) which is “continuous on its domain” according to one of the
above theorems. Its domain is all real numbers24, so it is continuous everywhere. No
problems here.

• The denominator is the sum of 2 and cos(x). Since 2 is a constant it is continuous
everywhere. Similarly (we just checked things for the previous point) we know that
cos(x) is continuous everywhere. Hence the denominator is continuous.

• So we just need to check if the denominator is zero. One of the facts that we should
know25 is that

´1 ď cos(x) ď 1

and so by adding 2 we get

1 ď 2 + cos(x) ď 3

Thus no matter what value of x, 2 + cos(x) ě 1 and so cannot be zero.

24 Remember that sin and cos are defined on all real numbers, so tan(x) = sin(x)/ cos(x) is continuous
everywhere except where cos(x) = 0. This happens when x = π

2 + nπ for any integer n. If you cannot
remember where tan(x) “blows up” or sin(x) = 0 or cos(x) = 0 then you should definitely revise
trigonometric functions. Come to think of it — just revise them anyway.

25 If you do not know this fact then you should revise trigonometric functions. See the previous footnote.
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• So the numerator is continuous, the denominator is continuous and nowhere zero,
so the function is continuous everywhere.

If the function were changed to
sin(x)

x2 ´ 5x + 6
much of the same reasoning can be used.

Being a little terse we could answer with:

• Numerator and denominator are continuous.

• Since x2 ´ 5x + 6 = (x ´ 2)(x ´ 3) the denominator is zero when x = 2, 3.

• So the function is continuous everywhere except possibly at x = 2, 3. In order to
verify that the function really is discontinuous at those points, it suffices to verify
that the numerator is non-zero at x = 2, 3. Indeed we know that sin(x) is zero only
when x = nπ (for any integer n). Hence sin(2), sin(3) ‰ 0. Thus the numerator
is non-zero, while the denominator is zero and hence x = 2, 3 really are points of
discontinuity.

Note that this example raises a subtle point about checking continuity when numerator
and denominator are simultaneously zero. There are quite a few possible outcomes in this
case and we need more sophisticated tools to adequately analyse the behaviour of func-
tions near such points. We will return to this question later in the text after we have
developed Taylor expansions (see Section 3.4).

Example 1.6.9

So we know what happens when we add subtract multiply and divide, what about
when we compose functions? Well - limits and compositions work nicely when things are
continuous.

If f is continuous at b and lim
xÑa

g(x) = b then lim
xÑa

f (g(x)) = f (b). I.e.

lim
xÑa

f (g(x)) = f
(

lim
xÑa

g(x)
)

Hence if g is continuous at a and f is continuous at g(a) then the composite
function ( f ˝ g)(x) = f (g(x)) is continuous at a.

Theorem 1.6.10 (Compositions and continuity).

So when we compose two continuous functions we get a new continuous function.
We can put this to use

Example 1.6.11

Where are the following functions continuous?

f (x) = sin
(

x2 + cos(x)
)

g(x) =
b

sin(x)
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Our first step should be to break the functions down into pieces and study them. When
we put them back together we should be careful of dividing by zero, or falling outside the
domain.

• The function f (x) is the composition of sin(x) with x2 + cos(x).

• These pieces, sin(x), x2, cos(x) are continuous everywhere.

• So the sum x2 + cos(x) is continuous everywhere

• And hence the composition of sin(x) and x2 + cos(x) is continuous everywhere.

The second function is a little trickier.

• The function g(x) is the composition of
?

x with sin(x).

•
?

x is continuous on its domain x ě 0.

• sin(x) is continuous everywhere, but it is negative in many places.

• In order for g(x) to be defined and continuous we must restrict x so that sin(x) ě 0.

• Recall the graph of sin(x):

Hence sin(x) ě 0 when x P [0, π] or x P [2π, 3π] or x P [´2π, ´π] or. . . . To be more
precise sin(x) is positive when x P [2nπ, (2n + 1)π] for any integer n.

• Hence g(x) is continuous when x P [2nπ, (2n + 1)π] for any integer n.

Example 1.6.11

Continuous functions are very nice (mathematically speaking). Functions from the
“real world” tend to be continuous (though not always). The key aspect that makes them
nice is the fact that they don’t jump about.

The absence of such jumps leads to the following theorem which, while it can be quite
confusing on first glance, actually says something very natural — obvious even. It says,
roughly speaking, that, as you draw the graph y = f (x) starting at x = a and ending at
x = b, y changes continuously from y = f (a) to y = f (b), with no jumps, and conse-
quently y must take every value between f (a) and f (b) at least once. We’ll start by just
giving the precise statement and then we’ll explain it in detail.
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Let a ă b and let f be a function that is continuous at all points a ď x ď b. If Y
is any number between f (a) and f (b) then there exists some number c P [a, b] so
that f (c) = Y.

Theorem 1.6.12 (Intermediate value theorem (IVT)).

Like the ϵ ´ δ definition of limits26, we should break this theorem down into pieces.
Before we do that, keep the following pictures in mind.

Figure 1.6.1.

Now the break-down

• Let a ă b and let f be a function that is continuous at all points a ď x ď b. — This
is setting the scene. We have a, b with a ă b (we can safely assume these to be real
numbers). Our function must be continuous at all points between a and b.

• if Y is any number between f (a) and f (b) — Now we need another number Y and
the only restriction on it is that it lies between f (a) and f (b). That is, if f (a) ď f (b)
then f (a) ď Y ď f (b). Or if f (a) ě f (b) then f (a) ě Y ě f (b). So notice that
Y could be equal to f (a) or f (b) — if we wanted to avoid that possibility, then we
would normally explicitly say Y ‰ f (a), f (b) or we would write that Y is strictly
between f (a) and f (b).

• there exists some number c P [a, b] so that f (c) = Y — so if we satisfy all of the
above conditions, then there has to be some real number c lying between a and b so
that when we evaluate f (c) it is Y.

So that breaks down the theorem statement by statement, but what does it actually mean?

• Draw any continuous function you like between a and b — it must be continuous.

• The function takes the value f (a) at x = a and f (b) at x = b — see the left-hand
figure above.

26 The interested student is invited to take a look at the optional Section 1.7
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• Now we can pick any Y that lies between f (a) and f (b) — see the middle figure
above. The IVT27 tells us that there must be some x-value that when plugged into
the function gives us Y. That is, there is some c between a and b so that f (c) = Y. We
can also interpret this graphically; the IVT tells us that the horizontal straight line
y = Y must intersect the graph y = f (x) at some point (c, Y) with a ď c ď b.

• Notice that the IVT does not tell us how many such c-values there are, just that there
is at least one of them. See the right-hand figure above. For that particular choice of
Y there are three different c values so that f (c1) = f (c2) = f (c3) = Y.

This theorem says that if f (x) is a continuous function on all of the interval a ď x ď b then
as x moves from a to b, f (x) takes every value between f (a) and f (b) at least once. To put
this slightly differently, if f were to avoid a value between f (a) and f (b) then f cannot be
continuous on [a, b].

It is not hard to convince yourself that the continuity of f is crucial to the IVT. Without
it one can quickly construct examples of functions that contradict the theorem. See the
figure below for a few non-continuous examples:

Figure 1.6.2.

In the left-hand example we see that a discontinuous function can “jump” over the
Y-value we have chosen, so there is no x-value that makes f (x) = Y. The right-hand
example demonstrates why we need to be be careful with the ends of the interval. In
particular, a function must be continuous over the whole interval [a, b] including the end-
points of the interval. If we only required the function to be continuous on (a, b) (so strictly
between a and b) then the function could “jump” over the Y-value at a or b.

If you are still confused then here is a “real-world” example

Example 1.6.13

You are climbing the Grouse-grind28 with a friend — call him Bob. Bob was eager and

27 Often with big important useful theorems like this one, writing out the full name again and again be-
comes tedious, so we abbreviate it. Such abbreviations are okay provided the reader knows this is
what you are doing, so the first time you use an abbreviation you should let the reader know. Much
like we are doing here in this footnote: “IVT” stands for “intermediate value theorem”, which is Theo-
rem 1.6.12.

28 If you don’t know it then google it.
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started at 9am. Bob, while very eager, is also very clumsy; he sprained his ankle some-
where along the path and has stopped moving at 9:21am and is just sitting29 enjoying the
view. You get there late and start climbing at 10am and being quite fit you get to the top at
11am. The IVT implies that at some time between 10am and 11am you meet up with Bob.

You can translate this situation into the form of the IVT as follows. Let t be time and let
a = 10am and b = 11am. Let g(t) be your distance along the trail. Hence30 g(a) = 0 and
g(b) = 2.9km. Since you are a mortal, your position along the trail is a continuous function
— no helicopters or teleportation or. . . We have no idea where Bob is sitting, except that
he is somewhere between g(a) and g(b), call this point Y. The IVT guarantees that there
is some time c between a and b (so between 10am and 11am) with g(c) = Y (and your
position will be the same as Bob’s).

Example 1.6.13

Aside from finding Bob sitting by the side of the trail, one of the most important ap-
plications of the IVT is determining where a function is zero. For quadratics we know (or
should know) that

ax2 + bx + c = 0 when x =
´b ˘

?
b2 ´ 4ac

2a

While the Babylonians could (mostly, but not quite) do the above, the corresponding for-
mula for solving a cubic is uglier and that for a quartic is uglier still. One of the most
famous results in mathematics demonstrates that no such formula exists for quintics or
higher degree polynomials31.

So even for polynomials we cannot, in general, write down explicit formulae for their
zeros and have to make do with numerical approximations — i.e. write down the root as
a decimal expansion to whatever precision we desire. For more complicated functions we
have no choice — there is no reason that the zeros should be expressible as nice neat little
formulas. At the same time, finding the zeros of a function:

f (x) = 0

or solving equations of the form32

g(x) = h(x)

can be a crucial step in many mathematical proofs and applications.

29 Hopefully he remembered to carry something warm.
30 It’s amazing what facts you can find on Wikipedia.
31 The similar (but uglier) formula for solving cubics took until the 15th century and the work of del Ferro

and Cardano (and Cardano’s student Ferrari). A similar (but even uglier) formula for quartics was
also found by Ferrari. The extremely famous Abel-Ruffini Theorem (nearly by Ruffini in the late 18th
century and completely by Abel in early 19th century) demonstrates that a similar formula for the
zeros of a quintic does not exist. Note that the theorem does not say that quintics do not have zeros;
rather it says that the zeros cannot in general be expressed using a finite combination of addition,
multiplication, division, powers and roots. The interested student should also look up Évariste Galois
and his contributions to this area.

32 In fact both of these are the same because we can write f (x) = g(x) ´ h(x) and then the zeros of f (x)
are exactly when g(x) = h(x).
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For this reason there is a considerable body of mathematics which focuses just on find-
ing the zeros of functions. The IVT provides a very simple way to “locate” the zeros of a
function. In particular, if we know a continuous function is negative at a point x = a and
positive at another point x = b, then there must (by the IVT) be a point x = c between a
and b where f (c) = 0.

Figure 1.6.3.

Consider the leftmost of the above figures. It depicts a continuous function that is
negative at x = a and positive at x = b. So choose Y = 0 and apply the IVT — there must
be some c with a ď c ď b so that f (c) = Y = 0. While this doesn’t tell us c exactly, it does
give us bounds on the possible positions of at least one zero — there must be at least one
c obeying a ď c ď b.

See middle figure. To get better bounds we could test a point half-way between a and
b. So set a1 = a+b

2 . In this example we see that f (a1) is negative. Applying the IVT again
tells us there is some c between a1 and b so that f (c) = 0. Again — we don’t have c exactly,
but we have halved the range of values it could take.

Look at the rightmost figure and do it again — test the point half-way between a1 and
b. In this example we see that f (b1) is positive. Applying the IVT tells us that there is
some c between a1 and b1 so that f (c) = 0. This new range is a quarter of the length of the
original. If we keep doing this process the range will halve each time until we know that
the zero is inside some tiny range of possible values. This process is called the bisection
method.

Consider the following zero-finding example

Example 1.6.14

Show that the function f (x) = x ´ 1 + sin(πx/2) has a zero in 0 ď x ď 1.
This question has been set up nicely to lead us towards using the IVT; we are already

given a nice interval on which to look. In general we might have to test a few points and
experiment a bit with a calculator before we can start narrowing down a range.

Let us start by testing the endpoints of the interval we are given

f (0) = 0 ´ 1 + sin(0) = ´1 ă 0
f (1) = 1 ´ 1 + sin(π/2) = 1 ą 0

So we know a point where f is positive and one where it is negative. So by the IVT there
is a point in between where it is zero.

BUT in order to apply the IVT we have to show that the function is continuous, and
we cannot simply write
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it is continuous

We need to explain to the reader why it is continuous. That is — we have to prove it.
So to write up our answer we can put something like the following — keeping in mind

we need to tell the reader what we are doing so they can follow along easily.

• We will use the IVT to prove that there is a zero in [0, 1].

• First we must show that the function is continuous.

– Since x ´ 1 is a polynomial it is continuous everywhere.

– The function sin(πx/2) is a trigonometric function and is also continuous ev-
erywhere.

– The sum of two continuous functions is also continuous, so f (x) is continuous
everywhere.

• Let a = 0, b = 1, then

f (0) = 0 ´ 1 + sin(0) = ´1 ă 0
f (1) = 1 ´ 1 + sin(π/2) = 1 ą 0

• The function is negative at x = 0 and positive at x = 1. Since the function is contin-
uous we know there is a point c P [0, 1] so that f (c) = 0.

Notice that though we have not used full sentences in our explanation here, we are still
using words. Your mathematics, unless it is very straight-forward computation, should
contain words as well as symbols.

Example 1.6.14

The zero is actually located at about x = 0.4053883559.
The bisection method is really just the idea that we can keep repeating the above rea-

soning (with a calculator handy). Each iteration will tell us the location of the zero more
precisely. The following example illustrates this.

Example 1.6.15

Use the bisection method to find a zero of

f (x) = x ´ 1 + sin(πx/2)

that lies between 0 and 1.
So we start with the two points we worked out above:

• a = 0, b = 1 and

f (0) = ´1
f (1) = 1

• Test the point in the middle x = 0+1
2 = 0.5

f (0.5) = 0.2071067813 ą 0
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• So our new interval will be [0, 0.5] since the function is negative at x = 0 and positive
at x = 0.5

Repeat

• a = 0, b = 0.5 where f (0) ă 0 and f (0.5) ą 0.

• Test the point in the middle x = 0+0.5
2 = 0.25

f (0.25) = ´0.3673165675 ă 0

• So our new interval will be [0.25, 0.5] since the function is negative at x = 0.25 and
positive at x = 0.5

Repeat

• a = 0.25, b = 0.5 where f (0.25) ă 0 and f (0.5) ą 0.

• Test the point in the middle x = 0.25+0.5
2 = 0.375

f (0.375) = ´0.0694297669 ă 0

• So our new interval will be [0.375, 0.5] since the function is negative at x = 0.375 and
positive at x = 0.5

Below is an illustration of what we have observed so far together with a plot of the actual
function.
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And one final iteration:

• a = 0.375, b = 0.5 where f (0.375) ă 0 and f (0.5) ą 0.

• Test the point in the middle x = 0.375+0.5
2 = 0.4375

f (0.4375) = 0.0718932843 ą 0

• So our new interval will be [0.375, 0.4375] since the function is negative at x = 0.375
and positive at x = 0.4375

So without much work we know the location of a zero inside a range of length 0.0625 =
2´4. Each iteration will halve the length of the range and we keep going until we reach
the precision we need, though it is much easier to program a computer to do it.

Example 1.6.15

1.7 Ĳ (Optional) — Making the Informal a Little More Formal

As we noted above, the definition of limits that we have been working with was quite
informal and not mathematically rigorous. In this (optional) section we will work to un-
derstand the rigorous definition of limits.

Here is the formal definition — we will work through it all very slowly and carefully
afterwards, so do not panic.

Let a P R and let f (x) be a function defined everywhere in a neighbourhood of
a, except possibly at a. We say that

the limit as x approaches a of f (x) is L

or equivalently

as x approaches a, f (x) approaches L

and write

lim
xÑa

f (x) = L

if and only if for every ϵ ą 0 there exists δ ą 0 so that

| f (x) ´ L| ă ϵ whenever 0 ă |x ´ a| ă δ

Note that an equivalent way of writing this very last statement is

if 0 ă |x ´ a| ă δ then | f (x) ´ L| ă ϵ.

Definition 1.7.1.
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This is quite a lot to take in, so let us break it down into pieces.

Usually a definition can be broken down into three pieces.

• Scene setting — define symbols and any restrictions on the objects that we
are talking about.

• Naming — state the name and any notation for the property or object that
the definition is about.

• Properties and restrictions — this is the heart of the definition where we
explain to the reader what it is that the object (in our case a function) has to
do in order to satisfy the definition.

Definition 1.7.2 (The typical 3 pieces of a definition).

Let us go back to the definition and look at each of these pieces in turn.

• Setting things up — The first sentence of the definition is really just setting up the
picture. It is telling us what the definition is about and sorting out a few technical
details.

– Let a P R — This simply tells us that the symbol “a” is a real number33.

– Let f (x) be a function — This is just setting the scene so that we understand all
of the terms and symbols.

– defined everywhere in a neighbourhood of a, except possibly at a — This
is just a technical requirement; we need our function to be defined in a little
region34 around a. The function doesn’t have to be defined everywhere, but it
must be defined for all x-values a little less than a and a little more than a. The
definition does not care about what the function does outside this little window,
nor does it care what happens exactly at a.

• Names, phrases and notation — The next part of the definition is simply naming the
property we are discussing and tells us how to write it down. i.e. we are talking
about “limits” and we write them down using the symbols indicated.

• The heart of things — we explain this at length below, but for now we will give a
quick explanation. Work on these two points. They are hard.

– for all ϵ ą 0 there exists δ ą 0 — It is important we read this in order. It
means that we can pick any positive number ϵ we want and there will always
be another positive number δ that is going to make what ever follows be true.

33 The symbol “P” is read as “is an element of” — it is definitely not the same as e or ϵ or ε. If you do not
recognise “R” or understand the difference between R and R, then please go back and read Chapter 0
carefully.

34 The term “neighbourhood of a” means a small open interval around a — for example (a ´ 0.01, a+ 0.01).
Typically we don’t really care how big this little interval is.
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– if 0 ă |x ´ a| ă δ then | f (x) ´ L| ă ϵ — From the previous point we have our
two numbers — any ϵ ą 0 then based on that choice of ϵ we have a positive
number δ. The current statement says that whenever we have chosen x so that
it is very close to a, then f (x) has to be very close to L. How close is “very
close”? Well 0 ă |x ´ a| ă δ means that x has to be within a distance δ of a (but
not exactly a) and similarly | f (x) ´ L| ă ϵ means that f (x) has to be within a
distance ϵ of L.

That is the definition broken up into pieces which hopefully now make more sense, but
what does it actually mean? Consider a function we saw earlier

f (x) =

#

2x x ‰ 3
9 x = 3

and sketch it again:

Zoom in

Figure 1.7.1.

We know (from our earlier work) that limxÑ3 f (x) = 6, so zoom in around (x, y) =
(3, 6). To make this look more like our definition, we have a = 3 and L = 6.

• Pick some small number ϵ ą 0 and highlight the horizontal strip of all points (x, y)
for which |y ´ L| ă ϵ. This means all the y-values have to satisfy L ´ ϵ ă y ă L + ϵ.

• You can see that the graph of the function passes through this strip for some x-values
close to a. What we need to be able to do is to pick a vertical strip of x-values around
a so that the function lies inside the horizontal strip.

• That is, we must find a small number δ ą 0 so that for any x-value inside the vertical
strip a ´ δ ă x ă a + δ, except exactly at x = a, the value of the function lies inside the
horizontal strip, namely L ´ ϵ ă y = f (x) ă L + ϵ.

• We see (pictorially) that we can do this. If we were to choose a smaller value of ϵ
making the horizontal strip narrower, it is clear that we can choose the vertical strip
to be narrower. Indeed, it doesn’t matter how small we make the horizontal strip,
we will always be able to construct the second vertical strip.
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The above is a pictorial argument, but we can quite easily make it into a mathematical
one. We want to show the limit is 6. That means for any ϵ we need to find a δ so that when

3 ´ δ ă x ă 3 + δ with x ‰ 3 we have 6 ´ ϵ ă f (x) ă 6 + ϵ

Now we note that when x ‰ 3, we have f (x) = 2x and so

6 ´ ϵ ă f (x) ă 6 + ϵ implies that 6 ´ ϵ ă 2x ă 6 + ϵ

this nearly specifies a range of x values, we just need to divide by 2

3 ´ ϵ/2 ă x ă 3 + ϵ/2

Hence if we choose δ = ϵ/2 then we get the desired inequality

3 ´ δ ă x ă 3 + δ

i.e. — no matter what ϵ ą 0 is chosen, if we put δ = ϵ/2 then when 3 ´ δ ă x ă 3 + δ
with x ‰ 3 we will have 6 ´ ϵ ă f (x) ă 6 + ϵ. This is exactly what we need to satisfy the
definition of “limit” above.

The above work gives us the argument we need, but it still needs to be written up
properly. We do this below.

Example 1.7.3

Find the limit as x Ñ 3 of the following function

f (x) =

#

2x x ‰ 3
9 x = 3

Proof. We will show that the limit is equal to 6. Let ϵ ą 0 and δ = ϵ/2. It remains to show
that | f (x) ´ 6| ă ϵ whenever |x ´ 3| ă δ.

So assume that |x ´ 3| ă δ, and so

3 ´ δ ă x ă 3 + δ multiply both sides by 2
6 ´ 2δ ă 2x ă 6 + 2δ

Recall that f (x) = 2x and that since δ = ϵ/2

6 ´ ϵ ă f (x) ă 6 + ϵ.

We can conclude that | f (x) ´ 6| ă ϵ as required.

Example 1.7.3

Because of the ϵ and δ in the definition of limits, we need to have ϵ and δ in the proof.
While ϵ and δ are just symbols playing particular roles, and could be replaced with other
symbols, this style of proof is usually called ϵ–δ proof.

In the above example everything works, but it can be very instructive to see what
happens in an example that doesn’t work.
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Example 1.7.4

Look again at the function

f (x) =

$

’

&

’

%

x x ă 2
´1 x = 2
x + 3 x ą 2

and let us see why, according to the definition of the limit, that lim
xÑ2

f (x) ‰ 2. Again, start

by sketching a picture and zooming in around (x, y) = (2, 2):

Zoom in

Try to proceed through the same steps as before:

• Pick some small number ϵ ą 0 and highlight a horizontal strip that contains all y-
values with |y ´ L| ă ϵ. This means all the y-values have to satisfy L ´ ϵ ă y ă L+ ϵ.

• You can see that the graph of the function passes through this strip for some x-values
close to a. To the left of a, we can always find some x-values that make the function
sit inside the horizontal-ϵ-strip. However, unlike the previous example, there is a
problem to the right of a. Even for x-values just a little larger than a, the value of
f (x) lies well outside the horizontal-ϵ-strip.

• So given this choice of ϵ, we can find a δ ą 0 so that for x inside the vertical strip
a ´ δ ă x ă a, the value of the function sits inside the horizontal-ϵ-strip.

• Unfortunately, there is no way to choose a δ ą 0 so that for x inside the vertical strip
a ă x ă a+ δ (with x ‰ a) the value of the function sits inside the horizontal-epsilon-
strip.

• So it is impossible to choose δ so that for x inside the vertical strip a ´ δ ă x ă a + δ
the value of the function sits inside the horizontal strip L ´ ϵ ă y = f (x) ă L + ϵ.

• Thus the limit of f (x) as x Ñ 2 is not 2.

Example 1.7.4

Doing things formally with ϵ’s and δ’s is quite painful for general functions. It is far
better to make use of the arithmetic of limits (Theorem 1.4.2) and some basic building
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blocks (like those in Theorem 1.4.1). Thankfully for most of the problems we deal with in
calculus (at this level at least) can be approached in exactly this way.

This does leave the problem of proving the arithmetic of limits and the limits of the
basic building blocks. The proof of the Theorem 1.4.2 is quite involved and we leave it to
the very end of this Chapter. Before we do that we will prove Theorem 1.4.1 by a formal
ϵ–δ proof. Then in the next section we will look at the formal definition of limits at infinity
and prove Theorem 1.5.3. The proof of the Theorem 1.5.9, the arithmetic of infinite limits,
is very similar to that of Theorem 1.4.2 and so we do not give it.

So let us now prove Theorem 1.4.1 in which we stated two simple limits:

lim
xÑa

c = c and lim
xÑa

x = a.

Here is the formal ϵ–δ proof:

Proof of Theorem 1.4.1. Since there are two limits to prove, we do each in turn. Let a, c be
real numbers.

• Let ϵ ą 0 and set f (x) = c. Choose δ = 1, then for any x satisfying |x ´ a| ă δ (or
indeed any real number x at all) we have | f (x) ´ c| = 0 ă ϵ. Hence lim

xÑa
c = c as

required.

• Let ϵ ą 0 and set f (x) = x. Choose δ = ϵ, then for any x satisfying |x ´ a| ă δ we
have

a ´ δ ă x ă a + δ but f (x) = x and δ = ϵ so
a ´ ϵ ă f (x) ă a + ϵ

Thus we have | f (x) ´ a| ă ϵ. Hence lim
xÑa

x = a as required.

This completes the proof.

1.8 Ĳ (Optional) — Making Infinite Limits a Little More Formal

For those of you who made it through the formal ϵ ´ δ definition of limits we give the
formal definition of limits involving infinity:
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(a) Let f be a function defined on the whole real line. We say that

the limit as x approaches 8 of f (x) is L

or equivalently

f (x) converges to L as x goes to 8

and write

lim
xÑ8

f (x) = L

if and only if for every ϵ ą 0 there exists M P R so that | f (x) ´ L| ă ϵ
whenever x ą M.

Similarly we write

lim
xÑ´8

f (x) = K

if and only if for every ϵ ą 0 there exists N P R so that | f (x) ´ K| ă ϵ
whenever x ă N.

(b) Let a be a real number and f (x) be a function defined for all x ‰ a. We write

lim
xÑa

f (x) = 8

if and only if for every P ą 0 there exists δ ą 0 so that f (x) ą P whenever
0 ă |x ´ a| ă δ.

(c) Let f be a function defined on the whole real line. We write

lim
xÑ8

f (x) = 8

if and only if for every P ą 0 there exists M ą 0 so that f (x) ą P whenever
x ą M.

Definition 1.8.1 (Limits involving infinity — formal).

Note that we can loosen the above requirements on the domain of definition of f —
for example, in part (a) all we actually require is that f (x) be defined for all x larger than
some value. It would be sufficient to require “there is some x0 P R so that f (x) is defined
for all x ą x0”. Also note that there are obvious variations of parts (b) and (c) with 8

replaced by ´8.
For completeness let’s prove Theorem 1.5.3 using this formal definition. The layout of

the proof will be very similar to our proof of Theorem 1.4.1.

Proof of Theorem 1.5.3. There are four limits to prove in total and we do each in turn. Let
c P R.
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• Let ϵ ą 0 and set f (x) = c. Choose M = 0, then for any x satisfying x ą M (or
indeed any real number x at all) we have | f (x) ´ c| = 0 ă ϵ. Hence lim

xÑ8
c = c as

required.

• The proof that lim
xÑ´8

c = c is nearly identical. Again, let ϵ ą 0 and set f (x) = c.

Choose N = 0, then for any x satisfying x ă N we have | f (x) ´ c| = 0 ă ϵ. Hence
lim

xÑ´8
c = c as required.

• Let ϵ ą 0 and set f (x) = x. Choose M = 1
ϵ . Then when x ą M we have

0 ă M ă x divide through by xM to get

0 ă
1
x

ă
1
M

= ϵ

Since x ą 0, 1/x = |1/x| = |1/x ´ 0| ă ϵ as required.

• Again, the proof in the limit to ´8 is similar but we have to be careful of signs. Let
ϵ ą 0 and set f (x) = x. Choose N = ´1

ϵ . Then when x ă N we have

0 ą N ą x divide through by xN to get

0 ą
1
x

ą
1
N

= ´ϵ

Notice that by assumption both x, N ă 0, so xN ą 0. Now since x ă 0, 1/x =
´|1/x| = |1/x ´ 0| ă ϵ as required.

This completes the proof.

1.9 Ĳ (Optional) — Proving the Arithmetic of Limits

Perhaps the most useful theorem of this chapter is Theorem 1.4.2 which shows how limits
interact with arithmetic. In this (optional) section we will prove both the arithmetic of
limits Theorem 1.4.2 and the Squeeze Theorem 1.4.17. Before we get to the proofs it is
very helpful to prove three technical lemmas that we’ll need. The first is a very general
result about absolute values of numbers:

For any x, y P R

|x + y| ď |x| + |y|

Lemma 1.9.1 (The triangle inequality).

Proof. Notice that for any real number x, we always have ´x, x ď |x| and either |x| = x or
|x| = ´x. So now let x, y P R. Then we must have either

|x + y| = x + y ď |x| + |y|
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or

|x + y| = ´x ´ y ď |x| + |y|

In both cases we end up with |x + y| ď |x| + |y|.

The second lemma is more specialised. It proves that if we have a function f (x) Ñ F
as x Ñ a then there must be a small window around x = a where the function f (x) must
only take values not far from F. In particular it tells us that | f (x)| cannot be bigger than
|F| + 1 when x is very close to a.

Let a P R and let f be a function so that lim
xÑa

f (x) = F. Then there exists a δ ą 0

so that if 0 ă |x ´ a| ă δ then we also have | f (x)| ď |F| + 1.

Lemma 1.9.2.

The proof is mostly just manipulating the ϵ–δ definition of a limit with ϵ = 1.

Proof. Let ϵ = 1. Then since f (x) Ñ F as x Ñ a, there exists a δ ą 0 so that when
0 ă |x ´ a| ă δ, we also have | f (x) ´ F| ď ϵ = 1. So now assume 0 ă |x ´ a| ă δ. Then

´ϵ ď f (x) ´ F ď ϵ rearrange a little
´ϵ + F ď f (x) ď ϵ + F

Now ϵ + F ď ϵ + |F| and ´ϵ + F ě ´ϵ ´ |F|, so

´ϵ ´ |F| ď f (x) ď ϵ + |F|

Hence we have | f (x)| ď ϵ + |F| = |F| + 1.

Finally our third technical lemma gives us a bound in the other direction; it tells us
that when x is close to a, the value of | f (x)| cannot be much smaller than |F|.

Let a P R and F ‰ 0 and let f be a function so that lim
xÑa

f (x) = F. Then there

exists δ ą 0 so that when 0 ă |x ´ a| ă δ, we have | f (x)| ą |F|/2.

Lemma 1.9.3.

Proof. Set ϵ = |F|/2 ą 0. Then since f (x) Ñ F, we know there exists a δ ą 0 so that
when 0 ă |x ´ a| ă δ we have | f (x) ´ F| ă ϵ. So now assume 0 ă |x ´ a| ă δ so that
| f (x) ´ F| ă ϵ = |F|/2. Then

|F| = |F ´ f (x) + f (x)| sneaky trick
ď | f (x) ´ F| + | f (x)| but | f (x) ´ F| ă ϵ

ă ϵ + | f (x)|

Hence | f (x)| ą |F| ´ ϵ = |F|/2 as required.
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Now we are in a position to prove Theorem 1.4.2. The proof has more steps than
the previous ϵ ´ δ proofs we have seen. This is mostly because we do not have specific
functions f (x) and g(x) and instead must play with them in the abstract — and make
good use of the formal definition of limits.

We will break the proof into three pieces. The minimum that is required is to prove
that

lim
xÑa

( f (x) + g(x)) = F + G

lim
xÑa

f (x) ¨ g(x) = F ¨ G

lim
xÑa

1/g(x) = 1/G if G ‰ 0.

From these three we can prove that

lim
xÑa

f (x) ¨ c = F ¨ c

lim
xÑa

( f (x) ´ g(x)) = F ´ G

lim
xÑa

f (x)/g(x) = F/G if G ‰ 0.

The first follows by setting g(x) = c and using lim f (x) ¨ g(x). The second follows by
setting c = ´1, putting h(x) = (´1) ¨ g(x) and then applying both lim f (x) ¨ g(x) and
lim f (x) + g(x). The third follows by setting h(x) = 1/g(x) and then using lim f (x) ¨ h(x).

Starting with addition, in order to satisfy the definition of limit, we are going to have
to show that

|( f (x) + g(x)) ´ (F + G)| is small

when we know that | f (x)´ F|, |g(x)´ G| are small. To do this we use the triangle inequal-
ity above showing that

|( f (x) + g(x)) ´ (F + G)| = |( f (x) ´ F) + (g(x) ´ G)| ď | f (x) ´ F| + |g(x) ´ G|

This is the key technical piece of the proof. So if we want the LHS of the above to be size
ϵ, we need to make sure that each term on the RHS is of size ϵ/2. The rest of the proof is
setting up facts based on the definition of limits and then rearranging facts to reach the
conclusion.

Proof. Proof of Theorem 1.4.2 — limit of a sum. Let a P R and assume that

lim
xÑa

f (x) = F and lim
xÑa

g(x) = G.

We wish to show that

lim
xÑa

f (x) + g(x) = F + G.

Let ϵ ą 0 — we have to find a δ ą 0 so that when |x ´ a| ă δ we have |( f (x) + g(x)) ´

(F + G)| ă ϵ.
Let ϵ ą 0 and set ϵ1 = ϵ2 = ϵ/2. By the definition of limits, because f (x) Ñ F there

exists some δ1 ą 0 so that whenever |x ´ a| ă δ1, we also have | f (x) ´ F| ă ϵ1. Similarly
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there exists δ2 ą 0 so that if |x ´ a| ă δ2, then we must have |g(x) ´ G| ă ϵ2. So now
choose δ = mintδ1, δ2u and assume |x ´ a| ă δ. Then we must have that |x ´ a| ă δ1, δ2
and so we also have

| f (x) ´ F| ă ϵ1 |g(x) ´ G| ă ϵ2

Now consider |( f (x) + g(x)) ´ (F + G)| and rearrange the terms:

|( f (x) + g(x)) ´ (F + G)| = |( f (x) ´ F) + (g(x) ´ G)| now apply triangle inequality
ď | f (x) ´ F| + |g(x) ´ G| use facts from above
ă ϵ1 + ϵ2

= ϵ.

Hence we have shown that for any ϵ ą 0 there exists some δ ą 0 so that when |x ´ a| ă

δ we also have |( f (x) + g(x))´ (F + G)| ă ϵ. Which is exactly the formal definition of the
limit we needed to prove.

Let us do similarly for the limit of a product. Some of the details of the proof are very
similar, but there is a little technical trick in the middle to make it work. In particular we
need to show that

| f (x) ¨ g(x) ´ F ¨ G| is small

when we know that | f (x) ´ F| and |g(x) ´ G| are both small. Notice that

f (x) ¨ g(x) ´ F ¨ G = f (x) ¨ g(x) ´ F ¨ G + f (x) ¨ G ´ f (x) ¨ G
loooooooooomoooooooooon

=0

= f (x) ¨ g(x) ´ f (x) ¨ G + f (x) ¨ G ´ F ¨ G
= f (x) ¨ (g(x) ´ G) + ( f (x) ´ F) ¨ G

So if we know | f (x) ´ F| is small and |g(x) ´ G| is small then we are done — except that
we also need to know that f (x) doesn’t become really large near a — this is exactly why
we needed to prove Lemma 1.9.2.

As was the case in the previous proof, we want the LHS to be of size at most ϵ, so we
want, for example, the two terms on the RHS to be of size at most ϵ/2. This means

• we need |G| ¨ | f (x) ´ F| to be of size at most ϵ/2, and

• we need |g(x) ´ G| to be of size at most ϵ/2(|F|+1) since we know that | f (x)| ď |F| + 1
when x is close to a.

Armed with these tricks we turn to the proofs.

Proof. Proof of Theorem 1.4.2 — limit of a product. Let a P R and assume that

lim
xÑa

f (x) = F and lim
xÑa

g(x) = G.

We wish to show that

lim
xÑa

f (x) ¨ g(x) = F ¨ G.

Let ϵ ą 0. Set ϵ1 = ϵ
2(|G|+1) (the extra +1 in the denominator is just there to make

sure that ϵ1 is well–defined even if G = 0), and ϵ2 = ϵ
2(|F|+1) . From this we establish the

existence of δ1, δ2, δ3 which we need below.
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• By assumption f (x) Ñ F so there exists δ1 ą 0 so that whenever |x ´ a| ă δ1, we also
have | f (x) ´ F| ă ϵ1.

• Similarly because g(x) Ñ G, there exists δ2 ą 0 so that whenever |x ´ a| ă δ2, we
also have |g(x) ´ G| ă ϵ2.

• By Lemma 1.9.2 there exists δ3 ą 0 so that whenever |x ´ a| ă δ3, we also have
| f (x)| ď |F| + 1.

Let δ = mintδ1, δ2, δ3u, assume |x ´ a| ă δ and consider | f (x) ¨ g(x) ´ F ¨ G|. Rearrange
the terms as we did above:

| f (x) ¨ g(x) ´ F ¨ G| = | f (x) ¨ (g(x) ´ G) + ( f (x) ´ F) ¨ G|

ď | f (x)| ¨ |g(x) ´ G| + |G| ¨ | f (x) ´ F|

By our three dot-points above we know that | f (x) ´ F| ă ϵ1 and |g(x) ´ G| ă ϵ2 and
| f (x)| ď |F| + 1, so we have

| f (x) ¨ g(x) ´ F ¨ G| ă | f (x)| ¨ ϵ2 + |G| ¨ ϵ1 sub in ϵ1, ϵ2 and bound on f (x)

ă (|F| + 1) ¨
ϵ

2(|F| + 1)
+ |G| ¨

ϵ

2(|G| + 1)

ď
ϵ

2
+

ϵ

2
= ϵ.

Thus we have shown that for any ϵ ą 0 there exists δ ą 0 so that when |x ´ a| ă δ we
also have | f (x) ¨ g(x) ´ F ¨ G| ă ϵ. Hence f (x) ¨ g(x) Ñ F ¨ G.

Finally we can prove the limit of a reciprocal. Notice that

1
g(x)

´
1
G

=
G ´ g(x)
g(x) ¨ G

We need to show the LHS is of size at most ϵ when x is close enough to a, so if G ´ g(x)
is small we are done — except if g(x) or G are close to zero. By assumption (go back and
read Theorem 1.4.2) we have G ‰ 0, and we know from Lemma 1.9.3 that |g(x)| cannot be
smaller than |G|/2. Together these imply that the denominator on the RHS cannot be zero
and indeed must be of magnitude at least |G|2/2. Thus we need |G ´ g(x)| to be of size at
most ϵ ¨ |G|2/2.

Proof. Proof of Theorem 1.4.2 — limit of a reciprocal. Let ϵ ą 0 and set ϵ1 = ϵ|G|2 ¨ 1
2 . We

now use this and Lemma 1.9.3 to establish the existence of δ1, δ2.

• Since g(x) Ñ G we know that there exists δ1 ą 0 so that when |x ´ a| ă δ1 we also
have |g(x) ´ G| ă ϵ1.

• By Lemma 1.9.3 there exists δ2 so that when |x ´ a| ă δ2 we also have |g(x)| ą |G|/2.
Equivalently, when |x ´ a| ă δ2 we also have

ˇ

ˇ

ˇ

G
2g(x)

ˇ

ˇ

ˇ
ă 1.
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Set δ = mintδ1, δ2u and assume |x ´ a| ă δ. Then
ˇ

ˇ

ˇ

ˇ

1
g(x)

´
1
G

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

G ´ g(x)
g(x) ¨ G

ˇ

ˇ

ˇ

ˇ

= |g(x) ´ G| ¨
1

|G| ¨ |g(x)|
by assumption

ă
ϵ1

|G| ¨ |g(x)|
sub in ϵ1

= ϵ ¨
|G|

2|g(x)|
since

ˇ

ˇ

ˇ

ˇ

G
2g(x)

ˇ

ˇ

ˇ

ˇ

ă 1

ă ϵ

Thus we have shown that for any ϵ ą 0 there exists δ ą 0 so that when |x ´ a| ă δ we also
have |1/g(x) ´ 1/G| ă ϵ. Hence 1/g(x) Ñ 1/G.

Proof. Proof of Theorem 1.4.17 — Squeeze / sandwich / pinch. In the squeeze theorem,
we are given three functions f (x), g(x) and h(x) and are told that

f (x) ď g(x) ď h(x) and lim
xÑa

f (x) = lim
xÑa

h(x) = L

and we must conclude from this that lim
xÑa

g(x) = L too. That is, we are given some fixed,

but unspecified, ϵ ą 0 and it is up to us to find a δ ą 0 with the property that |g(x) ´ L| ă ϵ
whenever |x ´ a| ă δ. Now because we have been told that f and h both converge to L,
there exist δ1 ą 0 and δ2 ą 0 such that

• | f (x) ´ L| ă ϵ, i.e. L ´ ϵ ă f (x) ă L + ϵ, whenever |x ´ a| ă δ1, and

• |h(x) ´ L| ă ϵ, i.e. L ´ ϵ ă h(x) ă L + ϵ, whenever |x ´ a| ă δ2

So set δ = mintδ1, δ2u and assume |x ´ a| ă δ. Then both L ´ ϵ ă f (x) ă L + ϵ and
L ´ ϵ ă h(x) ă L + ϵ so that

L ´ ϵ ă f (x) ď g(x) ď h(x) ă L + ϵ which implies that
L ´ ϵ ăg(x) ă L + ϵ which in turn gives us

|g(x) ´ L| ă ϵ

as desired.
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DERIVATIVES

Chapter 2

Calculus is built on two operations — differentiation, which is used to analyse instan-
taneous rate of change, and integration, which is used to analyse areas. Understanding
differentiation and using it to compute derivatives of functions is one of the main aims of
this course.

We had a glimpse of derivatives in the previous chapter on limits — in particular Sec-
tions 1.1 and 1.2 on tangents and velocities introduced derivatives in disguise. One of the
main reasons that we teach limits is to understand derivatives. Fortunately, as we shall
see, while one does need to understand limits in order to correctly understand deriva-
tives, one does not need the full machinery of limits in order to compute and work with
derivatives. The other main part of calculus, integration, we (mostly) leave until a later
course.

The derivative finds many applications in many different areas of the sciences. In-
deed the reason that calculus is taken by so many university students is so that they may
then use the ideas both in subsequent mathematics courses and in other fields. In almost
any field in which you study quantitative data you can find calculus lurking somewhere
nearby.

Its development1 came about over a very long time, starting with the ancient Greek ge-
ometers. Indian, Persian and Arab mathematicians made significant contributions from
around the 6th century. But modern calculus really starts with Newton and Leibniz in the
17th century who developed independently based on ideas of others including Descartes.
Newton applied his work to many physical problems (including orbits of moons and
planets) but didn’t publish his work. When Leibniz subsequently published his “calcu-
lus”, Newton accused him of plagiarism — this caused a huge rift between British and
continental-European mathematicians which wasn’t closed for another century.

2.1 Ĳ Revisiting Tangent Lines

By way of motivation for the definition of the derivative, we return to the discussion of
tangent lines that we started in the previous chapter on limits. We consider, in Exam-

1 A quick google will turn up many articles on the development and history of calculus. Wikipedia has
a good one.
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DERIVATIVES 2.1 REVISITING TANGENT LINES

ples 2.1.2 and 2.1.3, below, the problem of finding the slope of the tangent line to a curve
at a point. But let us start by recalling, in Example 2.1.1, what is meant by the slope of a
straight line.

Example 2.1.1

In this example, we recall what is meant by the slope of the straight line

y = 1
2 x + 3

2

• We claim that if, as we walk along this straight line, our x–coordinate changes by an
amount ∆x, then our y–coordinate changes by exactly ∆y = 1

2 ∆x.

• For example, in the figure on the left below, we move from the point

(x0, y0) = (1 , 2 = 1
2 ˆ 1 + 3

2)

on the line to the point

(x1, y1) = (5 , 4 = 1
2 ˆ 5 + 3

2)

on the line. In this move our x–coordinate changes by

∆x = 5 ´ 1 = 4

and our y–coordinate changes by

∆y = 4 ´ 2 = 2

which is indeed 1
2 ˆ 4 = 1

2 ∆x, as claimed.

x

y

∆x

∆y

y = 1
2
x+ 3

2

(1, 2)

(5, 4)

x

y

∆x

∆y

y = 1
2
x+ 3

2

(x0, y0)

(x1, y1)

• In general, when we move from the point

(x0, y0) = (x0, 1
2 x0 +

3
2)

on the line to the point

(x1, y1) = (x1, 1
2 x1 +

3
2)
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on the line, our x–coordinate changes by

∆x = x1 ´ x0

and our y–coordinate changes by

∆y = y1 ´ y0

=
[1

2 x1 +
3
2

]
´
[1

2 x0 +
3
2

]

= 1
2(x1 ´ x0)

which is indeed 1
2 ∆x, as claimed.

• So, for the straight line y = 1
2 x + 3

2 , the ratio ∆y
∆x = y1´y0

x1´x0
always takes the value 1

2 ,
regardless of the choice of initial point (x0, y0) and final point (x1, y1). This constant
ratio is the slope of the line y = 1

2 x + 3
2 .

Example 2.1.1

Straight lines are special in that for each straight line, there is a fixed number m, called
the slope of the straight line, with the property that if you take any two different points,
(x0, y0) and (x1, y1), on the line, the ratio ∆y

∆x = y1´y0
x1´x0

, which is called the rate of change
of y per unit rate of change2 of x, always takes the value m. This is the property that
distinguishes lines from other curves.

Other curves do not have this property. In the next two examples we illustrate this
point with the parabola y = x2. Recall that we studied this example back in Section 1.1.
In Example 2.1.2 we find the slope of the tangent line to y = x2 at a particular point. We
generalise this in Example 2.1.3, to show that we can define “the slope of the curve y = x2”
at an arbitrary point x = x0 by considering ∆y

∆x = y1´y0
x1´x0

with (x1, y1) very close to (x0, y0).

Example 2.1.2

In this example, let us fix (x0, y0) to be the point (2, 4) on the parabola y = x2. Now let
(x1, y1) = (x1, x2

1) be some other point on the parabola; that is, a point with x1 ‰ x0.

• Draw the straight line through (x0, y0) and (x1, y1) — this is a secant line and we
saw these in Chapter 1 when we discussed tangent lines3.

• The following table gives the slope, y1´y0
x1´x0

, of the secant line through (x0, y0) = (2, 4)
and (x1, y1), for various different choices of (x1, y1 = x2

1).

x1 1 1.5 1.9 1.99 1.999 ˝ 2.001 2.01 2.1 2.5 3

y1 = x2
1 1 2.25 3.61 3.9601 3.9960 ˝ 4.0040 4.0401 4.41 6.25 9

y1´y0
x1´x0

= y1´4
x1´2 3 3.5 3.9 3.99 3.999 ˝ 4.001 4.01 4.1 4.5 5

2 In the “real world” the phrase “rate of change” usually refers to rate of change per unit time. In science
it used more generally.

3 If you do not remember this, then please revisit the first couple of sections of Chapter 1.
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• So now we have a big table of numbers — what do we do with them? Well, there are
messages we can take away from this table.

– Different choices of x1 give different values for the slope, y1´y0
x1´x0

, of the secant
through (x0, y0) and (x1, y1). This is illustrated in Figure 2.1.1 below — the
slope of the secant through (x0, y0) and (x1, y1) is different from the slope of the
secant through (x0, y0) and (x1

1, y1
1).

x

y y = x2

(x0, y0)

(x′
1, y

′
1)

(x1, y1)

For a curvy curve, different secants have different slopes.

Figure 2.1.1.

If the parabola were a straight line this would not be the case — the secant
through any two different points on a line is always identical to the line itself
and so always has exactly the same slope as the line itself, as is illustrated in Fig-
ure 2.1.2 below — the (yellow) secant through (x0, y0) and (x1, y1) lies exactly
on top of the (red) line y = 1

2 x + 3
2 .

x

y y = 1
2
x+ 3

2

(x0, y0)

(x1, y1)

For a straight line, all secants have the same slope.

Figure 2.1.2.
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– Now look at the columns of the table closer to the middle. As x1 gets closer
and closer to x0 = 2, the slope, y1´y0

x1´x0
, of the secant through (x0, y0) and (x1, y1)

appears to get closer and closer to the value 4.

Example 2.1.2

Example 2.1.3

It is very easy to generalise what is happening in Example 2.1.2.

• Fix any point (x0, y0) on the parabola y = x2. If (x1, y1) is any other point on the
parabola y = x2, then y1 = x2

1 and the slope of the secant through (x0, y0) and
(x1, y1) is

slope =
y1 ´ y0

x1 ´ x0
=

x2
1 ´ x2

0
x1 ´ x0

since y = x2

=
(x1 ´ x0)(x1 + x0)

x1 ´ x0
remember a2

´ b2 = (a ´ b)(a + b)

= x1 + x0

You should check the values given in the table of Example 2.1.2 above to convince
yourself that the slope y1´y0

x1´x0
of the secant line really is x0 + x1 = 2 + x1 (since we set

x0 = 2).

• Now as we move x1 closer and closer to x0, the slope should move closer and closer
to 2x0. Indeed if we compute the limit carefully — we now have the technology to
do this — we see that in the limit as x1 Ñ x0 the slope becomes 2x0. That is

lim
x1Ñx0

y1 ´ y0

x1 ´ x0
= lim

x1Ñx0
(x1 + x0) by the work we did just above

= 2x0

Taking this limit gives us our first derivative. Of course we haven’t yet given the
definition of a derivative, so we perhaps wouldn’t recognise it yet. We rectify this in
the next section.
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x

y y = x2

(x0, y0)

Secants approaching a tangent line

Figure 2.1.3.

• So it is reasonable to say “as x1 approaches x0, the secant through (x0, y0) and (x1, y1)
approaches the tangent line to the parabola y = x2 at (x0, y0)”. This is what we did
back in Section 1.1.

The figure above shows four different secants through (x0, y0) for the curve y = x2.
The four hollow circles are four different choices of (x1, y1). As (x1, y1) approaches
(x0, y0), the corresponding secant does indeed approach the tangent to y = x2 at
(x0, y0), which is the heavy (red) straight line in the figure.

Using limits we determined the slope of the tangent line to y = x2 at x0 to be 2x0.
Often we will be a little sloppy with our language and instead say “the slope of the
parabola y = x2 at (x0, y0) is 2x0” — where we really mean the slope of the line
tangent to the parabola at x0.

Example 2.1.3

2.2 Ĳ Definition of the Derivative

We now define the “derivative” explicitly, based on the limiting slope ideas of the previous
section. Then we see how to compute some simple derivatives.

Let us now generalise what we did in the last section so as to find “the slope of the
curve y = f (x) at (x0, y0)” for any smooth enough4 function f (x).

As before, let (x0, y0) be any point on the curve y = f (x). So we must have y0 = f (x0).
Now let (x1, y1) be any other point on the same curve. So y1 = f (x1) and x1 ‰ x0. Think

4 The idea of “smooth enough” can be made quite precise. Indeed the word “smooth” has a very precise
meaning in mathematics, which we won’t cover here. For now think of “smooth” as meaning roughly
just “smooth”.
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of (x1, y1) as being pretty close to (x0, y0) so that the difference

∆x = x1 ´ x0

in x–coordinates is pretty small. In terms of this ∆x we have

x1 = x0 + ∆x and y1 = f
(
x0 + ∆x

)

We can construct a secant line through (x0, y0) and (x1, y1) just as we did for the parabola
above. It has slope

y1 ´ y0

x1 ´ x0
=

f
(
x0 + ∆x

)
´ f (x0)

∆x

If f (x) is reasonably smooth5, then as x1 approaches x0, i.e. as ∆x approaches 0, we would
expect the secant through (x0, y0) and (x1, y1) to approach the tangent line to the curve
y = f (x) at (x0, y0), just as happened in Figure 2.1.3. And more importantly, the slope of
the secant through (x0, y0) and (x1, y1) should approach the slope of the tangent line to
the curve y = f (x) at (x0, y0).

Thus we would expect6 the slope of the tangent line to the curve y = f (x) at (x0, y0)
to be

lim
∆xÑ0

f
(
x0 + ∆x

)
´ f (x0)

∆x

When we talk of the “slope of the curve” at a point, what we really mean is the slope of
the tangent line to the curve at that point. So “the slope of the curve y = f (x) at (x0, y0)”
is also the limit7 expressed in the above equation. The derivative of f (x) at x = x0 is also
defined to be this limit. Which leads8 us to the most important definition in this text:

5 Again the term “reasonably smooth” can be made more precise.
6 Indeed, we don’t have to expect — it is!
7 This is of course under the assumption that the limit exists — we will talk more about that below.
8 We will rename “x0” to “a” and “∆x” to “h”.
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Let a P R and let f (x) be defined on an open interval9 that contains a.

• The derivative of f (x) at x = a is denoted f 1(a) and is defined by

f 1(a) = lim
hÑ0

f
(
a + h

)
´ f (a)

h

if the limit exists.

• When the above limit exists, the function f (x) is said to be differentiable
at x = a. When the limit does not exist, the function f (x) is said to be not
differentiable at x = a.

• We can equivalently define the derivative f 1(a) by the limit

f 1(a) = lim
xÑa

f (x) ´ f (a)
x ´ a

.

To see that these two definitions are the same, we set x = a + h and then
the limit as h goes to 0 is equivalent to the limit as x goes to a.

Definition 2.2.1 (Derivative at a point).

Lets now compute the derivatives of some very simple functions. This is our first step
towards building up a toolbox for computing derivatives of complicated functions — this
process will very much parallel what we did in Chapter 1 with limits. The two simplest
functions we know are f (x) = c and g(x) = x.

Example 2.2.2 (Derivative of f (x) = c)

Let a, c P R be two constants. Compute the derivative of the constant function f (x) = c at
x = a.

We compute the desired derivative by just substituting the function of interest into the
formal definition of the derivative.

f 1(a) = lim
hÑ0

f (a + h) ´ f (a)
h

(the definition)

= lim
hÑ0

c ´ c
h

(substituted in the function)

= lim
hÑ0

0 (simplified things)

= 0

Example 2.2.2

That was easy! What about the next most complicated function — arguably it’s this one:

9 Recall, from Definition 0.3.5, that the open interval (c, d) is just the set of all real numbers obeying
c ă x ă d.
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Example 2.2.3 (Derivative of g(x) = x)

Let a P R and compute the derivative of g(x) = x at x = a.
Again, we compute the derivative of g by just substituting the function of interest into

the formal definition of the derivative and then evaluating the resulting limit.

g1(a) = lim
hÑ0

g(a + h) ´ g(a)
h

(the definition)

= lim
hÑ0

(a + h) ´ a
h

(substituted in the function)

= lim
hÑ0

h
h

(simplified things)

= lim
hÑ0

1 (simplified a bit more)

= 1

Example 2.2.3

That was a little harder than the first example, but still quite straight forward — start
with the definition and apply what we know about limits.

Thanks to these two examples, we have our first theorem about derivatives:

Let a, c P R and let f (x) = c be the constant function and g(x) = x. Then

f 1(a) = 0

and

g1(a) = 1.

Theorem 2.2.4 (Easiest derivatives).

To ratchet up the difficulty a little bit more, let us redo the example we have already
done a few times f (x) = x2. To make it a little more interesting let’s change the names of
the function and the variable so that it is not exactly the same as Examples 2.1.2 and 2.1.3.

Example 2.2.5
(
Derivative of h(t) = t2)

Compute the derivative of

h(t) = t2 at t = a

• This function isn’t quite like the ones we saw earlier — it’s a function of t rather
than x. Recall that a function is a rule which assigns to each input value an output
value. So far, we have usually called the input value x. But this “x” is just a dummy
variable representing a generic input value. There is nothing wrong with calling a
generic input value t instead. Indeed, from time to time you will see functions that
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are not written as formulas involving x, but instead are written as formulas in t (for
example representing time — see Section 1.2), or z (for example representing height),
or other symbols.

• So let us write the definition of the derivative

f 1(a) = lim
hÑ0

f (a + h) ´ f (a)
h

and then translate it to the function names and variables at hand:

h1(a) = lim
hÑ0

h(a + h) ´ h(a)
h

• But there is a problem — “h” plays two roles here — it is both the function name
and the small quantity that is going to zero in our limit. It is extremely dangerous
to have a symbol represent two different things in a single computation. We need to
change one of them. So let’s rename the small quantity that is going to zero in our
limit from “h” to “∆t”:

h1(a) = lim
∆tÑ0

h(a + ∆t) ´ h(a)
∆t

• Now we are ready to begin. Substituting in what the function h is,

h1(a) = lim
∆tÑ0

(a + ∆t)2 ´ a2

∆t

= lim
∆tÑ0

a2 + 2a ∆t + ∆t2 ´ a2

∆t
(
just squared out (a + ∆t)2)

= lim
∆tÑ0

2a ∆t + ∆t2

∆t
= lim

∆tÑ0
(2a + ∆t)

= 2a

• You should go back check that this is what we got in Example 2.1.3 — just some
names have been changed.

Example 2.2.5

§§ An Important Point (and Some Notation)

Notice here that the answer we get depends on our choice of a — if we want to know the
derivative at a = 3 we can just substitute a = 3 into our answer 2a to get the slope is 6.
If we want to know at a = 1 (like at the end of Section 1.1) we substitute a = 1 and get
the slope is 2. The important thing here is that we can move from the derivative being
computed at a specific point to the derivative being a function itself — input any value
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of a and it returns the slope of the tangent line to the curve at the point x = a, y = h(a).
The variable a is a dummy variable. We can rename a to anything we want, like x, for
example. So we can replace every a in

h1(a) = 2a by x, giving h1(x) = 2x

where all we have done is replaced the symbol a by the symbol x.
We can do this more generally and tweak the derivative at a specific point a to obtain

the derivative as a function of x. We replace

f 1(a) = lim
hÑ0

f (a + h) ´ f (a)
h

with

f 1(x) = lim
hÑ0

f (x + h) ´ f (x)
h

which gives us the following definition

Let f (x) be a function.

• The derivative of f (x) with respect to x is

f 1(x) = lim
hÑ0

f
(
x + h

)
´ f (x)

h

provided the limit exists.

• If the derivative f 1(x) exists for all x P (a, b) we say that f is differentiable
on (a, b).

• Note that we will sometimes be a little sloppy with our discussions and
simply write “ f is differentiable” to mean “ f is differentiable on an interval
we are interested in” or “ f is differentiable everywhere”.

Definition 2.2.6 (Derivative as a function).

Notice that we are no longer thinking of tangent lines, rather this is an operation we
can do on a function. For example:

Example 2.2.7
(

The derivative of f (x) = 1
x

)

Let f (x) = 1
x and compute its derivative with respect to x — think carefully about where

the derivative exists.

• Our first step is to write down the definition of the derivative — at this stage, we
know of no other strategy for computing derivatives.

f 1(x) = lim
hÑ0

f (x + h) ´ f (x)
h

(the definition)
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• And now we substitute in the function and compute the limit.

f 1(x) = lim
hÑ0

f (x + h) ´ f (x)
h

(the definition)

= lim
hÑ0

1
h

[
1

x + h
´

1
x

]
(substituted in the function)

= lim
hÑ0

1
h

x ´ (x + h)
x(x + h)

(wrote over a common denominator)

= lim
hÑ0

1
h

´h
x(x + h)

(started cleanup)

= lim
hÑ0

´1
x(x + h)

= ´
1
x2

• Notice that the original function f (x) = 1
x was not defined at x = 0 and the deriva-

tive is also not defined at x = 0. This does happen more generally — if f (x) is not
defined at a particular point x = a, then the derivative will not exist at that point
either.

Example 2.2.7

So we now have two slightly different ideas of derivatives:

• The derivative f 1(a) at a specific point x = a, being the slope of the tangent line to
the curve at x = a, and

• The derivative as a function, f 1(x) as defined in Definition 2.2.6.

Of course, if we have f 1(x) then we can always recover the derivative at a specific point
by substituting x = a.

As we noted at the beginning of the chapter, the derivative was discovered indepen-
dently by Newton and Leibniz in the late 17th century. Because their discoveries were
independent, Newton and Leibniz did not have exactly the same notation. Stemming
from this, and from the many different contexts in which derivatives are used, there are
quite a few alternate notations for the derivative:
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The following notations are all used for “the derivative of f (x) with respect to x”

f 1(x)
d f
dx

d
dx

f (x) ḟ (x) D f (x) Dx f (x),

while the following notations are all used for “the derivative of f (x) at x = a”

f 1(a)
d f
dx

(a)
d
dx

f (x)
ˇ

ˇ

ˇ

ˇ

x=a
ḟ (a) D f (a) Dx f (a).

Some things to note about these notations:

• We will generally use the first three, but you should recognise them all.
The notation f 1(a) is due to Lagrange, while the notation d f

dx (a) is due to
Leibniz. They are both very useful. Neither can be considered “better”.

• Leibniz notation writes the derivative as a “fraction” — however it is def-
initely not a fraction and should not be thought of in that way. It is just
shorthand, which is read as “the derivative of f with respect to x”.

• You read f 1(x) as “ f –prime of x”, and d f
dx as “dee– f –dee–x”, and d

dx f (x) as
“dee-by–dee–x of f ”.

• Similarly you read d f
dx (a) as “dee– f –dee–x at a”, and d

dx f (x)
ˇ

ˇ

ˇ

x=a
as “dee-by-

dee x of f at x equals a”.

• The notation ḟ is due to Newton. In physics, it is common to use ḟ (t) to
denote the derivative of f with respect to time.

Notation 2.2.8.

§§ Back to Computing Some Derivatives

At this point we could try to start working out how derivatives interact with arithmetic
and make an “Arithmetic of derivatives” theorem just like the one we saw for limits (The-
orem 2). We will get there shortly, but before that it is important that we become more
comfortable with computing derivatives using limits and then understanding what the
derivative actually means. So — more examples.

Example 2.2.9
(

d
dx

?
x
)

Compute the derivative, f 1(a), of the function f (x) =
?

x at the point x = a for any a ą 0.

• So again we start with the definition of derivative and go from there:

f 1(a) = lim
xÑa

f (x) ´ f (a)
x ´ a

= lim
xÑa

?
x ´

?
a

x ´ a
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• As x tends to a, the numerator and denominator both tend to zero. But 0
0 is not

defined. So to get a well defined limit we need to exhibit a cancellation between the
numerator and denominator — just as we saw in Examples 1.4.11 and 1.4.16. Now
there are two equivalent ways to proceed from here, both based on a similar “trick”.

• For the first, review Example 1.4.16, which concerned taking a limit involving square-
roots, and recall that we used “multiplication by the conjugate” there:

?
x ´

?
a

x ´ a
=

?
x ´

?
a

x ´ a
ˆ

?
x +

?
a

?
x +

?
a

(
multiplication by 1 =

conjugate
conjugate

)

=
(
?

x ´
?

a)(
?

x +
?

a)
(x ´ a)(

?
x +

?
a)

=
x ´ a

(x ´ a)(
?

x +
?

a)
(
since (A ´ B)(A + B) = A2

´ B2)
)

=
1

?
x +

?
a

• Alternatively, we can arrive at
?

x´
?

a
x´a = 1?

x+
?

a by using almost the same trick to

factor the denominator. Just set A =
?

x and B =
?

a in A2 ´ B2 = (A ´ B)(A + B)
to get

x ´ a = (
?

x ´
?

a)(
?

x +
?

a)

and then substitute this little fact into our expression
?

x ´
?

a
x ´ a

=

?
x ´

?
a

(
?

x ´
?

a)(
?

x +
?

a)
(now cancel common factors)

=
1

(
?

x +
?

a)

• Once we know that
?

x´
?

a
x´a = 1?

x+
?

a , we can take the limit we need:

f 1(a) = lim
xÑa

?
x ´

?
a

x ´ a

= lim
xÑa

1
?

x +
?

a

=
1

2
?

a

• We should think about the domain of f 1 here — that is, for which values of a is
f 1(a) defined? The original function f (x) was defined for all x ě 0, however the
derivative f 1(a) = 1

2
?

a is undefined at a = 0.

If we draw a careful picture of
?

x around x = 0 we can see why this has to be the
case. The figure below shows three different tangent lines to the graph of y = f (x) =
?

x. As the point of tangency moves closer and closer to the origin, the tangent line
gets steeper and steeper. The slope of the tangent line at

(
a,

?
a
)

blows up as a Ñ 0.
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x

y y =
√
x

Example 2.2.9

Example 2.2.10
(

d
dx t|x|u

)

Compute the derivative, f 1(a), of the function f (x) = |x| at the point x = a.

• We should start this example by recalling the definition of |x| (we saw this back in
Example 1.5.6):

|x| =

$

’

&

’

%

´x if x ă 0
0 if x = 0
x if x ą 0.

It is definitely not just “chop off the minus sign”.

• This breaks our computation of the derivative into 3 cases depending on whether x
is positive, negative or zero.

• Assume x ą 0. Then

d f
dx

= lim
hÑ0

f (x + h) ´ f (x)
h

= lim
hÑ0

|x + h| ´ |x|

h
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Since x ą 0 and we are interested in the behaviour of this function as h Ñ 0 we can
assume h is much smaller than x. This means x + h ą 0 and so |x + h| = x + h.

= lim
hÑ0

x + h ´ x
h

= lim
hÑ0

h
h
= 1 as expected

• Assume x ă 0. Then

d f
dx

= lim
hÑ0

f (x + h) ´ f (x)
h

= lim
hÑ0

|x + h| ´ |x|

h

Since x ă 0 and we are interested in the behaviour of this function as h Ñ 0 we can
assume h is much smaller than x. This means x + h ă 0 and so |x + h| = ´(x + h).

= lim
hÑ0

´(x + h) ´ (´x)
h

= lim
hÑ0

´h
h

= ´1

• When x = 0 we have

f 1(0) = lim
hÑ0

f (0 + h) ´ f (0)
h

= lim
hÑ0

|0 + h| ´ |0|

h

= lim
hÑ0

|h|

h

To proceed we need to know if h ą 0 or h ă 0, so we must use one-sided limits. The
limit from above is:

lim
hÑ0+

|h|

h
= lim

hÑ0+

h
h

since h ą 0, |h| = h

= 1

Whereas, the limit from below is:

lim
hÑ0´

|h|

h
= lim

hÑ0´

´h
h

since h ă 0, |h| = ´h

= ´1

Since the one-sided limits differ, the limit as h Ñ 0 does not exist. And thus the
derivative does not exist as x = 0.

In summary:

d
dx

|x| =

$

’

&

’

%

´1 if x ă 0
DNE if x = 0
1 if x ą 0
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Example 2.2.10

§§ Where is the Derivative Undefined?

According to Definition 2.2.1, the derivative f 1(a) exists precisely when the limit lim
xÑa

f (x)´ f (a)
x´a

exists. That limit is also the slope of the tangent line to the curve y = f (x) at x = a. That
limit does not exist when the curve y = f (x) does not have a tangent line at x = a or
when the curve does have a tangent line, but the tangent line has infinite slope. We have
already seen some examples of this.

• In Example 2.2.7, we considered the function f (x) = 1
x . This function “blows up”

(i.e. becomes infinite) at x = 0. It does not have a tangent line at x = 0 and its
derivative does not exist at x = 0.

• In Example 2.2.10, we considered the function f (x) = |x|. This function does not
have a tangent line at x = 0, because there is a sharp corner in the graph of y = |x|

at x = 0. (Look at the graph in Example 2.2.10.) So the derivative of f (x) = |x| does
not exist at x = 0.

Here are a few more examples.

Example 2.2.11

Visually, the function

H(x) =

#

0 if x ď 0
1 if x ą 0

x

y y = H(x)

does not have a tangent line at (0, 0). Not surprisingly, when a = 0 and h tends to 0 with
h ą 0,

H(a + h) ´ H(a)
h

=
H(h) ´ H(0)

h
=

1
h

blows up. The same sort of computation shows that f 1(a) cannot possibly exist whenever
the function f is not continuous at a. We will formalize, and prove, this statement in
Theorem 2.2.14, below.
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Example 2.2.11

Example 2.2.12
(

d
dx x1/3

)

Visually, it looks like the function f (x) = x1/3, sketched below, (this might be a good
point to recall that cube roots of negative numbers are negative — for example, since
(´1)3 = ´1, the cube root of ´1 is ´1),

y = x1/3

has the y–axis as its tangent line at (0, 0). So we would expect that f 1(0) does not exist.
Let’s check. With a = 0,

f 1(a) = lim
hÑ0

f (a + h) ´ f (a)
h

= lim
hÑ0

f (h) ´ f (0)
h

= lim
hÑ0

h1/3

h
= lim

hÑ0

1
h2/3 = DNE

as expected.
Example 2.2.12

Example 2.2.13
(

d
dx

a

|x|

)

We have already considered the derivative of the function
?

x in Example 2.2.9. We’ll now
look at the function f (x) =

a

|x|. Recall, from Example 2.2.10, the definition of |x|. When
x ą 0, we have |x| = x and f (x) is identical to

?
x. When x ă 0, we have |x| = ´x and

f (x) =
?

´x. So to graph y =
a

|x| when x ă 0, you just have to graph y =
?

x for x ą 0
and then send x Ñ ´x — i.e. reflect the graph in the y–axis. Here is the graph. The pointy

y =
√

|x|

thing at the origin is called a cusp. The graph of y = f (x) does not have a tangent line at
(0, 0) and, correspondingly, f 1(0) does not exist because

lim
hÑ0+

f (h) ´ f (0)
h

= lim
hÑ0+

a

|h|

h
= lim

hÑ0+

1
?

h
= DNE

118



DERIVATIVES 2.3 INTERPRETATIONS OF THE DERIVATIVE

Example 2.2.13

If the function f (x) is differentiable at x = a, then f (x) is also continuous at
x = a.

Theorem 2.2.14.

Proof. The function f (x) is continuous at x = a if and only if the limit of

f (a + h) ´ f (a) =
f (a + h) ´ f (a)

h
h

as h Ñ 0 exists and is zero. But if f (x) is differentiable at x = a, then, as h Ñ 0, the
first factor, f (a+h)´ f (a)

h converges to f 1(a) and the second factor, h, converges to zero. So
the product provision of our arithmetic of limits Theorem 1.4.2 implies that the product
f (a+h)´ f (a)

h h converges to f 1(a) ¨ 0 = 0 too.

Notice that while this theorem is useful as stated, it is (arguably) more often applied in
its contrapositive10 form:

If f (x) is not continuous at x = a then it is not differentiable at x = a.

Theorem 2.2.15 (The contrapositive of Theorem 2.2.14).

As the above examples illustrate, this statement does not tell us what happens if f is
continuous at x = a — we have to think!

2.3 Ĳ Interpretations of the Derivative

In the previous sections we defined the derivative as the slope of a tangent line, using a
particular limit. This allows us to compute “the slope of a curve11” and provides us with
one interpretation of the derivative. However, the main importance of derivatives does
not come from this application. Instead, (arguably) it comes from the interpretation of the
derivative as the instantaneous rate of change of a quantity.

10 If you have forgotten what the contrapositive is, then quickly reread Footnote 10 in Section 1.3.
11 Again — recall that we are being a little sloppy with this term — we really mean “The slope of the

tangent line to the curve”.
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§§ Instantaneous Rate of Change

In fact we have already (secretly) used a derivative to compute an instantaneous rate
of change in Section 1.2. For your convenience we’ll review that computation here, in
Example 2.3.1, and then generalise it.

Example 2.3.1

You drop a ball from a tall building. After t seconds the ball has fallen a distance of
s(t) = 4.9t2 metres. What is the velocity of the ball one second after it is dropped?

• In the time interval from t = 1 to t = 1 + h the ball travels a distance

s(1 + h) ´ s(1) = 4.9(1 + h)2
´ 4.9(1)2 = 4.9

[
2h + h2]

• So the average velocity over this time interval is

average velocity from t = 1 to t = 1 + h

=
distance travelled from t = 1 to t = 1 + h

length of time from t = 1 to t = 1 + h

=
s(1 + h) ´ s(1)

h

=
4.9
[
2h + h2]

h
= 4.9[2 + h]

• The instantaneous velocity at time t = 1 is then defined to be the limit

instantaneous velocity at time t = 1

= lim
hÑ0

[
average velocity from t = 1 to t = 1 + h

]

= lim
hÑ0

s(1 + h) ´ s(1)
h

= s1(1)

= lim
hÑ0

4.9[2 + h]

= 9.8m/sec

• We conclude that the instantaneous velocity at time t = 1, which is the instantaneous
rate of change of distance per unit time at time t = 1, is the derivative s1(1) =
9.8m/sec.

Example 2.3.1

Now suppose, more generally, that you are taking a walk and that as you walk, you
are continuously measuring some quantity, like temperature, and that the measurement
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at time t is f (t). Then the

average rate of change of f (t) from t = a to t = a + h

=
change in f (t) from t = a to t = a + h
length of time from t = a to t = a + h

=
f (a + h) ´ f (a)

h

so the

instantaneous rate of change of f (t) at t = a

= lim
hÑ0

[
average rate of change of f (t) from t = a to t = a + h

]

= lim
hÑ0

f (a + h) ´ f (a)
h

= f 1(a)

In particular, if you are walking along the x–axis and your x–coordinate at time t is x(t),
then x1(a) is the instantaneous rate of change (per unit time) of your x–coordinate at time
t = a, which is your velocity at time a. If v(t) is your velocity at time t, then v1(a) is the
instantaneous rate of change of your velocity at time a. This is called your acceleration at
time a.

You might expect that if the instantaneous rate of change of a function at time c is
strictly positive, then, in some sense, the function is increasing at t = c. You would be
right. Indeed, if f 1(c) ą 0, then, by definition, the limit of f (t)´ f (c)

t´c as t approaches c is
strictly bigger than zero. So

• for all t ą c that are sufficiently close12 to c

f (t) ´ f (c)
t ´ c

ą 0 ùñ f (t) ´ f (c) ą 0 (since t ´ c ą 0)

ùñ f (t) ą f (c)

• for all t ă c that are sufficiently close to c

f (t) ´ f (c)
t ´ c

ą 0 ùñ f (t) ´ f (c) ă 0 (since t ´ c ă 0)

ùñ f (t) ă f (c)

Consequently we say that “ f (t) is increasing at t = c”. If we wish to emphasise that the
inequalities above are the strict inequalities ą and ă, as opposed to ě and ď, we will say
that “ f (t) is strictly increasing at t = c”.

12 This is typical mathematician speak — it allows us to be completely correct, without being terribly
precise. In this context, “sufficiently close” means “The following need not be true for all t bigger than
c, but there must exist some b ą c so that the following is true for all c ă t ă b”. Typically we do not
know what b is. And typically it does not matter what the exact value of b is. All that matters is that b
exists and is strictly bigger than c.
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§§ Slope

Suppose that y = f (x) is the equation of a curve in the xy–plane. That is, f (x) is the
y–coordinate of the point on the curve whose x–coordinate is x. Then, as we have already
seen,

[
the slope of the secant through

(
a, f (a)

)
and

(
a + h, f (a + h)

)]
=

f (a + h) ´ f (a)
h

This is shown in Figure 2.3.1 below.

Figure 2.3.1.

In order to create the tangent line (as we have done a few times now) we squeeze
h Ñ 0. As we do this, the secant through

(
a, f (a)

)
and

(
a + h, f (a + h)

)
approaches13 the

tangent line to y = f (x) at x = a. Since the secant becomes the tangent line in this limit,
the slope of the secant becomes the slope of the tangent and

[
the slope of the tangent line to y = f (x) at x = a

]
= lim

hÑ0

f (a + h) ´ f (a)
h

= f 1(a).

Let us go a little further and work out a general formula for the equation of the tangent
line to y = f (x) at x = a. We know that the tangent line

• has slope f 1(a) and

• passes through the point
(
a, f (a)

)
.

There are a couple of different ways to construct the equation of the tangent line from this
information. One is to observe, as in Figure 2.3.2, that if (x, y) is any other point on the
tangent line then the line segment from

(
a, f (a)

)
to (x, y) is part of the tangent line and so

also has slope f 1(a). That is,

y ´ f (a)
x ´ a

=
[
the slope of the tangent line

]
= f 1(a)

13 We are of course assuming that the curve is smooth enough to have a tangent line at a.
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Cross multiplying gives us the equation of the tangent line:

y ´ f (a) = f 1(a) (x ´ a) or y = f (a) + f 1(a) (x ´ a)

x

y

(
a, f(a)

)

y = f(x)

y = f(a) + f ′(a) (x− a)

(x, y)

A line segment of a tangent line

Figure 2.3.2.

A second way to derive the same equation of the same tangent line is to recall that
the general equation for a line, with finite slope, is y = mx + b, where m is the slope and
b is the y-intercept. We already know the slope — so m = f 1(a). To work out b we use
the other piece of information — (a, f (a)) is on the line. So (x, y) = (a, f (a)) must solve
y = f 1(a) x + b. That is,

f (a) = f 1(a) ¨ a + b and so b = f (a) ´ a f 1(a)

Hence our equation is, once again,

y = f 1(a) ¨ x + ( f (a) ´ a f 1(a)) or, after rearranging a little,
y = f (a) + f 1(a) (x ´ a)

This is a very useful formula, so perhaps we should make it a theorem.

The tangent line to the curve y = f (x) at x = a is given by the equation

y = f (a) + f 1(a) (x ´ a)

provided the derivative f 1(a) exists.

Theorem 2.3.2 (Tangent line).
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The caveat at the end of the above theorem is necessary — there are certainly cases in
which the derivative does not exist and so we do need to be careful.

Example 2.3.3

Find the tangent line to the curve y =
?

x at x = 4.
Rather than redoing everything from scratch, we can, and for efficiency, should, use

Theorem 2.3.2. To write this up properly, we must ensure that we tell the reader what we
are doing. So something like the following:

• By Theorem 2.3.2, the tangent line to the curve y = f (x) at x = a is given by

y = f (a) + f 1(a)(x ´ a)

provided f 1(a) exists.

• In Example 2.2.9, we found that, for any a ą 0, the derivative of
?

x at x = a is

f 1(a) =
1

2
?

a

• In the current example, a = 4 and we have

f (a) = f (4) =
?

x
ˇ

ˇ

x=4 =
?

4 = 2 and f 1(a) = f 1(4) =
1

2
?

a

ˇ

ˇ

ˇ

a=4
=

1
2
?

4
=

1
4

• So the equation of the tangent line to y =
?

x at x = 4 is

y = 2 +
1
4
(
x ´ 4

)
or y =

x
4
+ 1

We don’t have to write it up using dot-points as above; we have used them here to help
delineate each step in the process of computing the tangent line.

Example 2.3.3

2.4 Ĳ Arithmetic of Derivatives - a Differentiation Toolbox

So far, we have evaluated derivatives only by applying Definition 2.2.1 to the function
at hand and then computing the required limits directly. It is quite obvious that as the
function being differentiated becomes even a little complicated, this procedure quickly
becomes extremely unwieldy. It is many orders of magnitude more efficient to have access
to

• a list of derivatives of some simple functions and

• a collection of rules for breaking down complicated derivative computations into
sequences of simple derivative computations.
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This is precisely what we did to compute limits. We started with limits of simple functions
and then used “arithmetic of limits” to computed limits of complicated functions.

We have already started building our list of derivatives of simple functions. We have
shown, in Examples 2.2.2, 2.2.3, 2.2.5 and 2.2.9, that

d
dx

1 = 0
d
dx

x = 1
d
dx

x2 = 2x
d
dx

?
x =

1
2
?

x

We’ll expand this list later.
We now start building a collection of tools that help reduce the problem of computing

the derivative of a complicated function to that of computing the derivatives of a number
of simple functions. In this section we give three derivative “rules” as three separate
theorems. We’ll give the proofs of these theorems in the next section and examples of how
they are used in the following section.

As was the case for limits, derivatives interact very cleanly with addition, subtraction
and multiplication by a constant. The following result actually follows very directly from
the first three points of Theorem 1.4.2.

Let f (x), g(x) be differentiable functions and let c P R be a constant. Then

d
dx

␣

f (x) + g(x)
(

= f 1(x) + g1(x)

d
dx

␣

f (x) ´ g(x)
(

= f 1(x) ´ g1(x)

d
dx

␣

c f (x)
(

= c f 1(x)

That is, the derivative of the sum is the sum of the derivatives, and so forth.

Lemma 2.4.1 (Derivative of sum and difference).

Following this we can combine the three statements in this lemma into a single rule
which captures the “linearity of differentiation”.

Again, let f (x), g(x) be differentiable functions, let α, β P R be constants and
define the “linear combination”

S(x) = α f (x) + βg(x).

Then the derivative of S(x) at x = a exists and is

dS
dx

= S1(x) = α f 1(x) + βg1(x).

Note that we can recover the three rules in the previous lemma by setting α =
β = 1 or α = 1, β = ´1 or α = c, β = 0.

Theorem 2.4.2 (Linearity of differentiation).
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Unfortunately, the derivative does not act quite as simply on products or quotients.
The rules for computing derivatives of products and quotients get their own names and
theorems:

Let f (x), g(x) be differentiable functions, then the derivative of the product
f (x)g(x) exists and is given by

d
dx

␣

f (x) g(x)
(

= f 1(x) g(x) + f (x) g1(x).

Theorem 2.4.3 (The product rule).

Before we proceed to the derivative of the ratio of two functions, it is worth noting a
special case of the product rule when g(x) = f (x). In fact, since this is a useful special
case, let us call it a corollary14:

Let f (x) be a differentiable function, then the derivative of its square is:

d
dx

␣

f (x)2( = 2 f (x) f 1(x)

Corollary 2.4.4 (Derivative of a square).

With a little work this can be generalised to other powers — but that is best done once
we understand how to compute the derivative of the composition of two functions. That
requires the chain rule (see Theorem 2.9.2 below). But before we get to that, we need to
see how to take the derivative of a quotient of two functions.

Let f (x), g(x) be differentiable functions. Then the derivative of their quotient is

d
dx

"

f (x)
g(x)

*

=
f 1(x) g(x) ´ f (x) g1(x)

g(x)2 .

This derivative exists except at points where g(x) = 0.

Theorem 2.4.5 (The quotient rule).

There is a useful special case of this theorem which we obtain by setting f (x) = 1. In
that case, the quotient rule tells us how to compute the derivative of the reciprocal of a
function.

14 Recall that a corollary is an important result that follows from one or more theorems — typically with-
out too much extra work — as is the case here.
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Let g(x) be a differentiable function. Then the derivative of the reciprocal of g is
given by

d
dx

"

1
g(x)

*

= ´
g1(x)
g(x)2

and exists except at those points where g(x) = 0.

Corollary 2.4.6 (Derivative of a reciprocal).

So we have covered, sums, differences, products and quotients. This allows us to
compute derivatives of many different functions — including polynomials and rational
functions. However we are still missing trigonometric functions (for example), and a rule
for computing derivatives of compositions. These will follow in the near future, but there
are a couple of things to do before that — understand where the above theorems come
from, and practice using them.

2.5 Ĳ Proofs of the Arithmetic of Derivatives

The theorems of the previous section are not too difficult to prove from the definition of
the derivative (which we know) and the arithmetic of limits (which we also know). In this
section we show how to construct these rules.

Throughout this section we will use our two functions f (x) and g(x). Since the theo-
rems we are going to prove all express derivatives of linear combinations, products and
quotients in terms of f , g and their derivatives, it is helpful to recall the definitions of the
derivatives of f and g:

f 1(x) = lim
hÑ0

f (x + h) ´ f (x)
h

and g1(x) = lim
hÑ0

g(x + h) ´ g(x)
h

.

Our proofs, roughly speaking, involve doing algebraic manipulations to uncover the ex-
pressions that look like the above.

§§ Proof of the Linearity of Differentiation (Theorem 2.4.2)

Recall that in Theorem 2.4.2 we defined S(x) = α f (x) + β g(x), where α, β P R are con-
stants. We wish to compute S1(x), so we start with the definition:

S1(x) = lim
hÑ0

S(x + h) ´ S(x)
h

Let us concentrate on the numerator of the expression inside the limit and then come back
to the full limit in a moment. Substitute in the definition of S(x):

S(x + h) ´ S(x) =
[
α f (x + h) + βg(x + h)

]
´
[
α f (x) + βg(x)

]
collect terms

= α
[

f (x + h) ´ f (x)] + β
[
g(x + h) ´ g(x)

]
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Now it is easy to see the structures we need — namely, we almost have the expressions
for the derivatives f 1(x) and g1(x). Indeed, all we need to do is divide by h and take the
limit. So let’s finish things off.

S1(x) = lim
hÑ0

S(x + h) ´ S(x)
h

from above

= lim
hÑ0

α
[

f (x + h) ´ f (x)] + β
[
g(x + h) ´ g(x)

]

h

= lim
hÑ0

[
α

f (x + h) ´ f (x)
h

+ β
g(x + h) ´ g(x)

h

]
limit laws

= α lim
hÑ0

f (x + h) ´ f (x)
h

+ β lim
hÑ0

g(x + h) ´ g(x)
h

= α f 1(x) + βg1(x)

as required.

§§ Proof of the Product Rule (Theorem 2.4.3)

After the warm-up above, we will just jump straight in. Let P(x) = f (x) g(x), the product
of our two functions. The derivative of the product is given by

P1(x) = lim
hÑ0

P(x + h) ´ P(x)
h

Again we will focus on the numerator inside the limit and massage it into the form we
need. To simplify these manipulations, define

F(h) =
f (x + h) ´ f (x)

h
and G(h) =

g(x + h) ´ g(x)
h

.

Then we can write

f (x + h) = f (x) + hF(h) and g(x + h) = g(x) + hG(h).

We can also write

f 1(x) = lim
hÑ0

F(h) and g1(x) = lim
hÑ0

G(h).

So back to that numerator:

P(x + h) ´ P(x) = f (x + h) ¨ g(x + h) ´ f (x) ¨ g(x) substitute
= [ f (x) + hF(h)] [g(x) + hG(h)] ´ f (x) ¨ g(x) expand

= f (x)g(x) + f (x) ¨ hG(h) + hF(h) ¨ g(x) + h2F(h) ¨ G(h) ´ f (x) ¨ g(x)

= f (x) ¨ hG(h) + hF(h) ¨ g(x) + h2F(h) ¨ G(h).

128



DERIVATIVES 2.5 PROOFS OF THE ARITHMETIC OF DERIVATIVES

Armed with this we return to the definition of the derivative:

P1(x) = lim
hÑ0

P(x + h) ´ P(x)
h

= lim
hÑ0

f (x) ¨ hG(h) + hF(h) ¨ g(x) + h2F(h) ¨ G(h)
h

=

(
lim
hÑ0

f (x) ¨ hG(h)
h

)
+

(
lim
hÑ0

hF(h) ¨ g(x)
h

)
+

(
lim
hÑ0

h2F(h) ¨ G(h)
h

)

=

(
lim
hÑ0

f (x) ¨ G(h)
)
+

(
lim
hÑ0

F(h) ¨ g(x)
)
+

(
lim
hÑ0

hF(h) ¨ G(h)
)

Now since f (x) and g(x) do not change as we send h to zero, we can pull them outside.
We can also write the third term as the product of 3 limits:

=

(
f (x) lim

hÑ0
G(h)

)
+

(
g(x) lim

hÑ0
F(h)

)
+

(
lim
hÑ0

h
)

¨

(
lim
hÑ0

F(h)
)

¨

(
lim
hÑ0

G(h)
)

= f (x) ¨ g1(x) + g(x) ¨ f 1(x) + 0 ¨ f 1(x) ¨ g1(x)
= f (x) ¨ g1(x) + g(x) ¨ f 1(x).

And so we recover the product rule.

§§ (optional) — Proof of the Quotient Rule (Theorem 2.4.5)

We now give the proof of the quotient rule in two steps15. We assume throughout that
g(x) ‰ 0 and that f (x) and g(x) are differentiable, meaning that the limits defining f 1(x),
g1(x) exist.

• In the first step, we prove the quotient rule under the assumption that f (x)/g(x) is
differentiable.

• In the second step, we prove that 1/g(x) differentiable. Once we know that 1/g(x)
is differentiable, the product rule implies that f (x)/g(x) is differentiable.

Step 1: the proof of the quotient rule assumng that f (x)
g(x) is differentiable. Write Q(x) = f (x)

g(x) .
Then f (x) = g(x) Q(x) so that f 1(x) = g1(x) Q(x) + g(x) Q1(x), by the product rule, and

Q1(x) =
f 1(x) ´ g1(x) Q(x)

g(x)
=

f 1(x) ´ g1(x) f (x)
g(x)

g(x)

=
f 1(x)g(x) ´ f (x)g1(x)

g(x)2

15 We thank Serban Raianu for suggesting this approach.
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Step 2: the proof that 1/g(x) is differentiable. By definition

d
dx

1
g(x)

= lim
hÑ0

1
h

[
1

g(x + h)
´

1
g(x)

]
= lim

hÑ0

g(x) ´ g(x + h)
h g(x) g(x + h)

= ´ lim
hÑ0

1
g(x)

1
g(x + h)

g(x + h) ´ g(x)
h

= ´
1

g(x)
lim
hÑ0

1
g(x + h)

lim
hÑ0

g(x + h) ´ g(x)
h

= ´
1

g(x)2 g1(x)

2.6 Ĳ Using the Arithmetic of Derivatives – Examples

In this section we illustrate the computation of derivatives using the arithmetic of deriva-
tives — Theorems 2.4.2, 2.4.3 and 2.4.5. To make it clear which rules we are using during
the examples we will note which theorem we are using:

‚ LIN to stand for “linearity” d
dx tα f (x) + β g(x)u = α f 1(x) + β g1(x) Theorem 2.4.2

‚ PR to stand for “product rule” d
dx t f (x) g(x)u = f 1(x) g(x) + f (x) g1(x) Theorem 2.4.3

‚ QR to stand for “quotient rule” d
dx

!

f (x)
g(x)

)

= f 1(x) g(x)´ f (x) g1(x)
g(x)2 Theorem 2.4.5

We’ll start with a really easy example.

Example 2.6.1

d
dx

t4x + 7u = 4 ¨
d
dx

txu + 7 ¨
d
dx

t1u LIN

= 4 ¨ 1 + 7 ¨ 0 = 4

where we have used LIN with f (x) = x, g(x) = 1, α = 4, β = 7.
Example 2.6.1

Example 2.6.2

Continuing on from the previous example, we can use the product rule and the previous
result to compute

d
dx

␣

x(4x + 7)
(

= x ¨
d
dx

t4x + 7u + (4x + 7)
d
dx

txu PR

= x ¨ 4 + (4x + 7) ¨ 1
= 8x + 7

where we have used the product rule PR with f (x) = x and g(x) = 4x + 7.
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Example 2.6.2

Example 2.6.3

In the same vein as the previous example, we can use the quotient rule to compute

d
dx

"

x
4x + 7

*

=
(4x + 7) ¨ d

dx txu ´ x ¨ d
dx t4x + 7u

(4x + 7)2 QR

=
(4x + 7) ¨ 1 ´ x ¨ 4

(4x + 7)2

=
7

(4x + 7)2

where we have used the quotient rule QR with f (x) = x and g(x) = 4x + 7.
Example 2.6.3

Now for a messier example.

Example 2.6.4

Differentiate

f (x) =
x

2x + 1
3x+1

This problem looks nasty. But it isn’t so hard if we just build it up a bit at a time.

• First, f (x) is the ratio of

f1(x) = x and f2(x) = 2x +
1

3x + 1

If we can find the derivatives of f1(x) and f2(x), we will be able to get the derivative
of f (x) just by applying the quotient rule. The derivative, f 1

1(x) = 1, of f1(x) is easy,
so let’s work on f2(x).

• The function f2(x) is the linear combination

f2(x) = 2 f3(x) + f4(x) with f3(x) = x and f4(x) =
1

3x + 1

If we can find the derivatives of f3(x) and f4(x), we will be able to get the derivative
of f2(x) just by applying linearity (Theorem 2.4.2). The derivative, f 1

3(x) = 1, of
f3(x) is easy. So let’s work of f4(x).

• The function f4(x) is the ratio

f4(x) =
1

f5(x)
with f5(x) = 3x + 1

If we can find the derivative of f5(x), we will be able to get the derivative of f4(x)
just by applying the special case the quotient rule (Corollary 2.4.6). The derivative
of f5(x) is easy.
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• So we have completed breaking down f (x) into easy pieces. It is now just a matter
of reversing the break down steps, putting everything back together, starting with
the easy pieces and working up to f (x). Here goes.

f5(x) = 3x + 1 so
d
dx

f5(x) = 3
d
dx

x +
d
dx

1 = 3 ¨ 1 + 0 = 3 LIN

f4(x) =
1

f5(x)
so

d
dx

f4(x) = ´
f 1
5(x)

f5(x)2 = ´
3

(3x + 1)2 QR

f2(x) = 2 f3(x) + f4(x) so
d
dx

f2(x) = 2 f 1
3(x) + f 1

4(x) = 2 ´
3

(3x + 1)2 LIN

f (x) =
f1(x)
f2(x)

so
d
dx

f (x) =
f 1
1(x) f2(x) ´ f1(x) f 1

2(x)
f2(x)2 QR

=
1
[
2x + 1

3x+1

]
´ x
[
2 ´ 3

(3x+1)2

]

[
2x + 1

3x+1

]2

Oof!

• We now have an answer. But we really should clean it up, not only to make it easier
to read, but also because invariably such computations are just small steps inside
much larger computations. Any future computations involving this expression will
be a lot easier and less error prone if we clean it up now. Cancelling the 2x and the
´2x in

1
[
2x +

1
3x + 1

]
´ x
[
2 ´

3
(3x + 1)2

]
= 2x +

1
3x + 1

´ 2x +
3x

(3x + 1)2

=
1

3x + 1
+

3x
(3x + 1)2

and multiplying both the numerator and denominator by (3x + 1)2 gives

f 1(x) =
1

3x+1 +
3x

(3x+1)2

[
2x + 1

3x+1

]2
(3x + 1)2

(3x + 1)2

=
(3x + 1) + 3x

[
2x(3x + 1) + 1

]2

=
6x + 1

[6x2 + 2x + 1]2
.

Example 2.6.4

While the linearity theorem (Theorem 2.4.2) is stated for a linear combination of two
functions, it is not difficult to extend it to linear combinations of three or more functions
as the following example shows.

132



DERIVATIVES 2.6 USING THE ARITHMETIC OF DERIVATIVES – EXAMPLES

Example 2.6.5

We’ll start by generalising linearity to three functions.

d
dx

␣

aF(x) + bG(x) + cH(x)
(

=
d
dx

␣

a ¨ [F(x)] + 1 ¨ [bG(x) + cH(x)]
(

= aF1(x) +
d
dx

tbG(x) + cH(x)u

by LIN with α = a, f (x) = F(x), β = 1,
and g(x) = bG(x) + cH(x)

= aF1(x) + bG1(x) + cH1(x)
by LIN with α = b, f (x) = G(x), β = c,
and g(x) = H(x)

This gives us linearity for three terms, namely (just replacing upper case names by lower
case names)

d
dx

ta f (x) + bg(x) + ch(x)u = a f 1(x) + bg1(x) + ch1(x)

Just by repeating the above argument many times, we may generalise to linearity for n
terms, for any natural number n:

d
dx

ta1 f1(x) + a2 f2(x) + ¨ ¨ ¨ + an fn(x)u = a1 f 1
1(x) + a2 f 1

2(x) + ¨ ¨ ¨ + an f 1
n(x)

Example 2.6.5

Similarly, while the product rule is stated for the product of two functions, it is not
difficult to extend it to the product of three or more functions as the following example
shows.

Example 2.6.6

Once again, we’ll start by generalising the product rule to three factors.

d
dx

tF(x) G(x) H(x)u = F1(x) G(x) H(x) + F(x)
d
dx

tG(x) H(x)u

by PR with f (x) = F(x) and g(x) = G(x)H(x)

= F1(x) G(x) H(x) + F(x)
␣

G1(x) H(x) + G(x) H1(x)
(

by PR with f (x) = G(x) and g(x) = H(x)

This gives us a product rule for three factors, namely (just replacing upper case names by
lower case names)

d
dx

t f (x) g(x) h(x)u = f 1(x) g(x) h(x) + f (x) g1(x) h(x) + f (x) g(x) h1(x)

Observe that when we differentiate a product of three factors, the answer is a sum of three
terms and in each term the derivative acts on exactly one of the original factors. Just by
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repeating the above argument many times, we may generalise the product rule to give the
derivative of a product of n factors, for any natural number n:

d
dx

t f1(x) f2(x) ¨ ¨ ¨ fn(x)u = f 1
1(x) f2(x) ¨ ¨ ¨ fn(x)

+ f1(x) f 1
2(x) ¨ ¨ ¨ fn(x)

...
+ f1(x) f2(x) ¨ ¨ ¨ f 1

n(x)

We can also write the above as

d
dx

t f1(x) f2(x) ¨ ¨ ¨ fn(x)u =

[
f 1
1(x)

f1(x)
+

f 1
2(x)

f2(x)
+ ¨ ¨ ¨ +

f 1
n(x)

fn(x)

]
¨ f1(x) f2(x) ¨ ¨ ¨ fn(x)

When we differentiate a product of n factors, the answer is a sum of n terms and in
each term the derivative acts on exactly one of the original factors. In the first term, the
derivative acts on the first of the original factors. In the second term, the derivative acts
on the second of the original factors. And so on.

If we make f1(x) = f2(x) = ¨ ¨ ¨ = fn(x) = f (x) then each of the n terms on the right
hand side of the above equation is the product of f 1(x) and exactly n ´ 1 f (x)’s, and so is
exactly f (x)n´1 f 1(x). So we get the following useful result

d
dx

f (x)n = n ¨ f (x)n´1
¨ f 1(x).

Example 2.6.6

This last result is quite useful, so let us write it as a lemma for future reference.

Let n be a natural number and f be a differentiable function. Then

d
dx

f (x)n = n ¨ f (x)n´1
¨ f 1(x).

Lemma 2.6.7.

This immediately gives us another useful result.

Example 2.6.8

We can now compute the derivative of xn for any natural number n. Start with Lemma 2.6.7
and substitute f (x) = x and f 1(x) = 1:

d
dx

xn = n ¨ xn´1
¨ 1 = n xn´1
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Example 2.6.8

Again — this is a result we will come back to quite a few times in the future, so we
should make sure we can refer to it easily. However, at present this statement only holds
when n is a positive integer. With a little more work we can extend this to compute xq

where q is any positive rational number and then any rational number at all (positive or
negative). So let us hold off for a little longer. Instead we can make it a lemma, since it
will be an ingredient in quite a few of the examples following below and in constructing
the final corollary.

Let n be a positive integer then

d
dx

xn = nxn´1 (2.6.1)

Lemma 2.6.9 (Derivative of xn).

Back to more examples.

Example 2.6.10

d
dx

␣

2x3 + 4x5( = 2
d
dx

tx3
u + 4

d
dx

tx5
u

by LIN with α = 2, f (x) = x3, β = 4, and g(x) = x5

= 2t3x2
u + 4t5x4

u

by Lemma 2.6.9, once with n = 3, and once with n = 5

= 6x2 + 20x4

Example 2.6.10

Example 2.6.11

In this example we’ll compute d
dx

␣

(3x + 9)(x2 + 4x3)
(

in two different ways. For the first,
we’ll start with the product rule.

d
dx

␣

(3x + 9)(x2 + 4x3)
(

=
! d

dx
(3x + 9)

)

(x2 + 4x3) + (3x + 9)
d
dx

tx2 + 4x3
u

=
␣

3 ˆ 1 + 9 ˆ 0
(

(x2 + 4x3) + (3x + 9) t2x + 4(3x2)u

= 3(x2 + 4x3) + (3x + 9) (2x + 12x2)

= 3x2 + 12x3 + (6x2 + 18x + 36x3 + 108x2)

= 18x + 117x2 + 48x3
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For the second, we expand the product first and then differentiate.

d
dx

␣

(3x + 9)(x2 + 4x3)
(

=
d
dx

␣

9x2 + 39x3 + 12x4(

= 9(2x) + 39(3x2) + 12(4x3)

= 18x + 117x2 + 48x3

Example 2.6.11

Example 2.6.12

d
dx

"

4x3 ´ 7x
4x2 + 1

*

=
(12x2 ´ 7)(4x2 + 1) ´ (4x3 ´ 7x)(8x)

(4x2 + 1)2

by QR with f (x) = 4x3
´ 7x, f 1(x) = 12x2

´ 7,

and g(x) = 4x2 + 1, g1(x) = 8x

=
(48x4 ´ 16x2 ´ 7) ´ (32x4 ´ 56x2)

(4x2 + 1)2

=
16x4 + 40x2 ´ 7

(4x2 + 1)2

Example 2.6.12

Example 2.6.13

In this example, we’ll use a little trickery to find the derivative of 3
?

x. The trickery consists
of observing that, by the definition of the cube root,

x =
(

3
?

x
)3 .

Since both sides of the expression are the same, they must have the same derivatives:

d
dx

txu =
d
dx
(

3
?

x
)3 .

We already know by Theorem 2.2.4 that

d
dx

␣

x
(

= 1

and that, by Lemma 2.6.7 with n = 3 and f (x) = 3
?

x,

d
dx
(

3
?

x
)3

= 3
(

3
?

x
)2

¨
d
dx

␣

3
?

x
(

= 3 x2/3
¨

d
dx

␣

3
?

x
(

.
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Since we know that d
dx txu = d

dx (
3

?
x)3, we must have

1 = 3x2/3
¨

d
dx

␣

3
?

x
(

which we can rearrange to give the result we need

d
dx

␣

3
?

x
(

= 1
3 x´2/3

Example 2.6.13

Example 2.6.14

In this example, we’ll use the same trickery as in Example 2.6.13 to find the derivative xp/q

for any two natural numbers p and q. By definition of the qth root,

xp =
(
xp/q)q.

That is, xp and
(
xp/q)q are the same function, and so have the same derivative. So we

differentiate both of them. We already know that, by Lemma 2.6.9 with n = p,

d
dx

␣

xp( = pxp´1

and that, by Lemma 2.6.7 with n = q and f (x) = xp/q,

d
dx

␣(
xp/q)q(

= q
(
xp/q)q´1 d

dx
␣

xp/q(

Remember that (xa)b = x(a¨b). Now these two derivatives must be the same. So

pxp´1 = q ¨ x(pq´p)/q d
dx

␣

xp/q(

and, rearranging things,

d
dx

␣

xp/q( =
p
q

xp´1´(pq´p)/q

=
p
q

x(pq´q´pq+p)/q

=
p
q

xp/q´1

So finally

d
dx

!

xp/q
)

=
p
q

xp/q´1 (2.6.2)
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Notice that this has the same form as Lemma 2.6.9, above, except with n = p/q allowed to
be any positive rational number, not just a positive integer.

Example 2.6.14

Example 2.6.15 (Derivative of x´m)

In this example we’ll use the quotient rule to find the derivative of x´m, for any natural
number m.

By the special case of the quotient rule (Corollary 2.4.6) with g(x) = xm and g1(x) =
mxm´1

d
dx

␣

x´m( =
d
dx

"

1
xm

*

= ´
mxm´1

(xm)2 = ´mx´m´1

Again, notice that this has the same form as Lemma 2.6.9, above, except with n = ´m
being a negative integer.

Example 2.6.15

Example 2.6.16

In this example we’ll use the quotient rule to find the derivative of x´p/q, for any pair
of natural numbers p and q. By the special case the quotient rule (Corollary 2.4.6) with
g(x) = xp/q and g1(x) = p

q xp/q´1,

d
dx

␣

x´p/q
(

=
d
dx

"

1
xp/q

*

= ´

p
q xp/q´1

(xp/q)
2 = ´

p
q

x´p/q´1

Example 2.6.16

Note that we have found, in Examples 2.2.2, 2.6.14 and 2.6.16, the derivative of xa for
any rational number a, whether 0, positive, negative, integer or fractional. In all cases, the
answer is

Let a be a rational number, then

d
dx

xa = axa´1 (2.6.3)

Corollary 2.6.17 (Derivative of xa).

We shall show, in Example 2.10.5, that the formula d
dx xa = axa´1 in fact applies for all real

numbers a, not just rational numbers.
Back in Example 2.2.9 we computed the derivative of

?
x from the definition of the

derivative. The above corollary (correctly) gives

d
dx

x1/2 =
1
2

x´1/2
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but with far less work.
Here’s an (optional) messy example.

Example 2.6.18 (Optional messy example)

Find the derivative of

f (x) =
(
?

x ´ 1)(2 ´ x)(1 ´ x2)
?

x(3 + 2x)

• As we seen before, the best strategy for dealing with nasty expressions is to break
them up into easy pieces. We can think of f (x) as the five–fold product

f (x) = f1(x) ¨ f2(x) ¨ f3(x) ¨
1

f4(x)
¨

1
f5(x)

with

f1(x) =
?

x ´ 1 f2(x) = 2 ´ x f3(x) = 1 ´ x2 f4(x) =
?

x f5(x) = 3 + 2x

• By now, the derivatives of the f j’s should be easy to find:

f 1
1(x) =

1
2
?

x
f 1
2(x) = ´1 f 1

3(x) = ´2x f 1
4(x) =

1
2
?

x
f 1
5(x) = 2

• Now, to get the derivative f (x) we use the n–fold product rule which was developed
in Example 2.6.6, together with the special case of the quotient rule (Corollary 2.4.6).

f 1(x) = f 1
1 f2 f3

1
f4

1
f5
+ f1 f 1

2 f3
1
f4

1
f5
+ f1 f2 f 1

3
1
f4

1
f5

´ f1 f2 f3
f 1
4

f 2
4

1
f5

´ f1 f2 f3
1
f4

f 1
5

f 2
5

=
[ f 1

1
f1
+

f 1
2

f2
+

f 1
3

f3
´

f 1
4

f4
´

f 1
5

f5

]
f1 f2 f3

1
f4

1
f5

=

[
1

2
?

x(
?

x ´ 1)
´

1
2 ´ x

´
2x

1 ´ x2 ´
1

2x
´

2
3 + 2x

]
(
?

x ´ 1)(2 ´ x)(1 ´ x2)
?

x(3 + 2x)

The trick that we used in going from the first line to the second line, namely mul-

tiplying term number j by
f j(x)
f j(x) is often useful in simplifying the derivative of a

product of many factors16.

Example 2.6.18

16 Also take a look at “logarithmic differentiation” in Section 2.10.
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2.7 Ĳ Derivatives of Exponential Functions

Now that we understand how derivatives interact with products and quotients, we are
able to compute derivatives of

• polynomials,

• rational functions, and

• powers and roots of rational functions.

Notice that all of the above come from knowing17 the derivative of xn and applying lin-
earity of derivatives and the product rule.

There is still one more “rule” that we need to complete our toolbox and that is the
chain rule. However before we get there, we will add a few functions to our list of things
we can differentiate18. The first of these is the exponential function.

Let a ą 0 and set f (x) = ax — this is what is known as an exponential function. Let’s
see what happens when we try to compute the derivative of this function just using the
definition of the derivative.

d f
dx

= lim
hÑ0

f (x + h) ´ f (x)
h

= lim
hÑ0

ax+h ´ ax

h

= lim
hÑ0

ax
¨

ah ´ 1
h

= ax
¨ lim

hÑ0

ah ´ 1
h

Unfortunately we cannot complete this computation because we cannot evaluate the last
limit directly. For the moment, let us assume this limit exists and name it

C(a) = lim
hÑ0

ah ´ 1
h

It depends only on a and is completely independent of x. Using this notation (which we
will quickly improve upon below), our desired derivative is now

d
dx

ax = C(a) ¨ ax.

Thus the derivative of ax is ax multiplied by some constant — i.e. the function ax is nearly
unchanged by differentiating. If we can tune a so that C(a) = 1 then the derivative would
just be the original function! This turns out to be very useful.

To try finding an a that obeys C(a) = 1, let us investigate how C(a) changes with a.
Unfortunately (though this fact is not at all obvious) there is no way to write C(a) as a
finite combination of any of the functions we have examined so far19. To get started, we’ll
try to guess C(a), for a few values of a, by plugging in some small values of h.

17 Differentiating powers and roots of functions is actually quite a bit easier once one knows the chain
rule — which we will discuss soon.

18 One reason we add these functions is that they interact very nicely with the derivative. Another reason
is that they turn up in many “real world” examples.

19 To a bit more be precise, we say that a number q is algebraic if we can write q as the zero of a polynomial
with integer coefficients. When a is any positive algebraic number other than 1, C(a) is not algebraic.
A number that is not algebraic is called transcendental. The best known example of a transcendental
number is π (which follows from the Lindemann-Weierstrass Theorem — way beyond the scope of this
course).
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Example 2.7.1

Let a = 1 then C(1) = lim
hÑ0

1h ´ 1
h

= 0. This is not surprising since 1x = 1 is constant, and

so its derivative must be zero everywhere. Let a = 2 then C(2) = lim
hÑ0

2h ´ 1
h

. Setting h to

smaller and smaller numbers gives

h 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001
2h´1

h 0.7177 0.6956 0.6934 0.6932 0.6931 0.6931 0.6931

Similarly when a = 3 we get

h 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001
3h´1

h 1.1612 1.1047 1.0992 1.0987 1.0986 1.0986 1.0986

and a = 10

h 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001
10h´1

h 2.5893 2.3293 2.3052 2.3028 2.3026 2.3026 2.3026

From this example it appears that C(a) increases as we increase a, and that C(a) = 1 for
some value of a between 2 and 3.

Example 2.7.1

We can learn a lot more about C(a), and, in particular, confirm the guesses that we
made in the last example, by making use of logarithms — this would be a good time for
you to review them.

§§ Whirlwind Review of Logarithms

Before you read much further into this little review on logarithms, you should first go
back and take a look at the review of inverse functions in Section 0.6.

§§§ Logarithmic Functions

We are about to define the “logarithm with base q”. In principle, q is allowed to be any
strictly positive real number, except q = 1. However we shall restrict our attention to
q ą 1, because, in practice, the only q’s that are ever used are e (a number that we shall
define in the next few pages), 10 and, if you are a computer scientist, 2. So, fix any q ą 1
(if you like, pretend that q = 10). The function f (x) = qx

• increases as x increases (for example if x1 ą x, then 10x1

= 10x ¨ 10x1´x ą 10x since
10x1´x ą 1)

• obeys lim
xÑ´8

qx = 0 (for example 10´1000 is really small) and

• obeys lim
xÑ+8

qx = +8 (for example 10+1000 is really big).

141



DERIVATIVES 2.7 DERIVATIVES OF EXPONENTIAL FUNCTIONS

Consequently, for any 0 ă Y ă 8, the horizontal straight line y = Y crosses the graph of
y = f (x) = qx at exactly one point, as illustrated in the figure below. The x–coordinate

x

y y = qx

y = Y

X

(X, Y )

of that intersection point, denoted X in the figure, is logq(Y). So logq(Y) is the power to
which you have to raise q to get Y. It is the inverse function of f (x) = qx. Of course we
are free to rename the dummy variables X and Y. If, for example, we wish to graph our
logarithm function, it is natural to rename Y Ñ x and X Ñ y, giving

Let q ą 1. Then the logarithm with base q is defined20 by

y = logq(x) ô x = qy

Definition 2.7.2.

Obviously the power to which we have to raise q to get qx is x, so we have both

logq(q
x) = x qlogq(x) = x

From the exponential properties

qlogq(xy) = xy = qlogq(x)qlogq(y) = qlogq(x)+logq(y)

qlogq(x/y) = x/y = qlogq(x)/qlogq(y) = qlogq(x)´logq(y)

qlogq(xr) = xr =
(
qlogq(x))r

= qrlogq(x)

20 We can also define logarithms with base 0 ă r ă 1 but doing so is not necessary. To see this, set
q = 1/r ą 1. Then it is reasonable to define logr(x) = ´ logq(x) since

rlogr(x) =

(
1
q

)logr(x)
=

(
1
q

)´ logq(x)
= qlogq(x) = x

as required.
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we have

logq(xy) = logq(x) + logq(y)

logq(x/y) = logq(x) ´ logq(y)

logq(xr) = r logq(x)

Can we convert from logarithms in one base to logarithms in another? For example, if
our calculator computes logarithms base 10 for us (which it very likely does), can we also
use it to compute a logarithm base q? Yes, using

logq(x) =
log10 x
log10 q

How did we get this? Well, let’s start with a number x and suppose that we want to
compute

y = logq x

We can rearrange this by exponentiating both sides

qy = qlogq x = x

Now take log base 10 of both sides

log10 qy = log10 x

But recall that logq(xr) = r logq(x), so

y log10 q = log10 x

y =
log10 x
log10 q

§§ Back to that Limit

Recall that we are trying to choose a so that

lim
hÑ0

ah ´ 1
h

= C(a) = 1.

We can estimate the correct value of a by using our numerical estimate of C(10) above.
The way to do this is to first rewrite C(a) in terms of logarithms.

a = 10log10 a and so ah = 10h log10 a.

Using this we rewrite C(a) as

C(a) = lim
hÑ0

1
h

(
10h log10 a

´ 1
)
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Now set H = h log10(a), and notice that as h Ñ 0 we also have H Ñ 0

= lim
HÑ0

log10 a
H

(
10H

´ 1
)

= log10 a ¨ lim
HÑ0

10H ´ 1
H

= log10 a ¨ C(10).

Below is a sketch of C(a) against a.

a

y

1 2 e 3 4

0.5

1.0

1.5

y = C(a) = C(10) log10 a

Figure 2.7.1.

Remember that we are trying to find an a with C(a) = 1. We can do so by recognising
that C(a) = C(10) (log10 a) has the following properties.

• When a = 1, log10(a) = log10 1 = 0 so that C(a) = C(10) log10(a) = 0. Of course,
we should have expected this, because when a = 1 we have ax = 1x = 1 which is
just the constant function and d

dx 1 = 0.

• log10 a increases as a increases, and hence C(a) = C(10) log10 a increases as a in-
creases.

• log10 a tends to +8 as a Ñ 8, and hence C(a) tends to +8 as a Ñ 8.

Hence the graph of C(a) passes through (1, 0), is always increasing as a increases and goes
off to +8 as a goes off to +8. See Figure 2.7.1. Consequently21 there is exactly one value
of a for which C(a) = 1.

The value of a for which C(a) = 1 is given the name e. It is called Euler’s constant22.

21 We are applying the Intermediate Value Theorem here, but we have neglected to verify the hypothesis
that log10(a) is a continuous function. Please forgive us — we could do this if we really had to, but
it would make a big mess without adding much understanding, if we were to do so here in the text.
Better to just trust us on this.

22 Unfortunately there is another Euler’s constant, γ, which is more properly called the Euler–Mascheroni
constant. Anyway like many mathematical discoveries, e was first found by someone else — Napier
used the constant e in order to compute logarithms but only implicitly. Bernoulli was probably the first
to approximate it when examining continuous compound interest. It first appeared explicitly in work
of Leibniz, though he denoted it b. It was Euler, though, who established the notation we now use and
who showed how important the constant is to mathematics.
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In Example 2.7.1, we estimated C(10) « 2.3026. So if we assume C(a) = 1 then the above
equation becomes

2.3026 ¨ log10 a « 1

log10 a «
1

2.3026
« 0.4343

a « 100.4343
« 2.7813

This gives us the estimate a « 2.7813 which is not too bad. In fact23

e = 2.7182818284590452354 . . .

= 1 +
1
1!

+
1
2!

+
1
3!

+
1
4!

+ ¨ ¨ ¨

Equation 2.7.3 (Euler’s constant).

We will be able to explain this last formula once we develop Taylor polynomials later
in the course.

To summarise

The constant e is the unique real number that satisfies

lim
hÑ0

eh ´ 1
h

= 1

Further,

d
dx

(ex) = ex

Theorem 2.7.4.

We plot ex in the graph below

23 Recall n factorial, written n! is the product n ˆ (n ´ 1) ˆ (n ´ 2) ˆ ¨ ¨ ¨ ˆ 2 ˆ 1.
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x

y

1 2 3−1−2−3

1
2

4

6

y = ex

Figure 2.7.2.

And just a reminder of some of its24 properties. . .

1. e0 = 1

2. ex+y = exey

3. e´x = 1
ex

4.
(
ex)y

= exy

5. lim
xÑ8

ex = 8, lim
xÑ´8

ex = 0

Now consider again the problem of differentiating ax. We saw above that

d
dx

ax = C(a) ¨ ax and C(a) = C(10) ¨ log10 a which gives
d
dx

ax = C(10) ¨ log10 a ¨ ax

We can eliminate the C(10) term with a little care. Since we know that d
dx ex = ex, we have

C(e) = 1. This allows us to express

1 = C(e) = C(10) ¨ log10 e and so

C(10) =
1

log10 e

Putting things back together gives

d
dx

ax =
log10 a
log10 e

¨ ax

= loge a ¨ ax.

24 ”The function ex is of course the special case of the function ax with a = e. So it inherits all the usual
algebraic properties of ax.”
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There is more than one way to get to this result. For example, let f (x) = ax, then

loge f (x) = x loge a

f (x) = ex loge a

So if we write g(x) = ex then we are really attempting to differentiate the function

d f
dx

=
d
dx

g(x ¨ loge a).

In order to compute this derivative we need to know how to differentiate

d
dx

g(qx)

where q is a constant. We’ll hold off on learning this for the moment until we have intro-
duced the chain rule (see Section 2.9 and in particular Corollary 2.9.9). Similarly we’d like
to know how to differentiate logarithms — again this has to wait until we have learned
the chain rule.

Notice that the derivatives

d
dx

xn = nxn´1 and
d
dx

ex = ex

are either nearly unchanged or actually unchanged by differentiating. It turns out that
some of the trigonometric functions also have this property of being “nearly unchanged”
by differentiation. That brings us to the next section.

2.8 Ĳ Derivatives of Trigonometric Functions

We are now going to compute the derivatives of the various trigonometric functions, sin x,
cos x and so on. The computations are more involved than the others that we have done
so far and will take several steps. Fortunately, the final answers will be very simple.

Observe that we only need to work out the derivatives of sin x and cos x, since the
other trigonometric functions are really just quotients of these two functions. Recall:

tan x =
sin x
cos x

cot x =
cos x
sin x

csc x =
1

sin x
sec x =

1
cos x

.

The first steps towards computing the derivatives of sin x, cos x is to find their deriva-
tives at x = 0. The derivatives at general points x will follow quickly from these, using
trig identities. It is important to note that we must measure angles in radians25, rather
than degrees, in what follows. Indeed — unless explicitly stated otherwise, any number
that is put into a trigonometric function is measured in radians.

25 In science, radians is the standard unit for measuring angles. While you may be more familiar with
degrees, radians should be used in any computation involving calculus. Using degrees will cause
errors. Thankfully it is easy to translate between these two measures since 360˝ = 2π radians. See
Appendix B.2.1.
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§§ These Proofs are Optional, the Results are Not.

While we expect you to read and follow these proofs, we do not expect you to be able
to reproduce them. You will be required to know the results, in particular Theorem 2.8.5
below.

§§ Step 1: d
dxtsin xu

ˇ

ˇ

x=0

By definition, the derivative of sin x evaluated at x = 0 is

d
dx

tsin xu

ˇ

ˇ

ˇ

x=0
= lim

hÑ0

sin h ´ sin 0
h

= lim
hÑ0

sin h
h

We will prove this limit by use of the squeeze theorem (Theorem 1.4.17). To get there we
will first need to do some geometry. But first we will build some intuition.

The figure below contains part of a circle of radius 1. Recall that an arc of length h on
such a circle subtends an angle of h radians at the centre of the circle. So the darkened arc
in the figure has length h and the darkened vertical line in the figure has length sin h. We
must determine what happens to the ratio of the lengths of the darkened vertical line and
darkened arc as h tends to zero.

h

sin h h1

cosh

Here is a magnified version of the part of the above figure that contains the darkened arc
and vertical line.

sin h h = 0.4
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This particular figure has been drawn with h = .4 radians. Here are three more such blow
ups. In each successive figure, the value of h is smaller. To make the figures clearer, the
degree of magnification was increased each time h was decreased.

sin h h = 0.2 sin h h = 0.1 sin h h = 0.05

As we make h smaller and smaller and look at the figure with ever increasing magnifi-
cation, the arc of length h and vertical line of length sin h look more and more alike. We
would guess from this that

lim
hÑ0

sin h
h

= 1

The following tables of values

h sin h sin h
h

0.4 .3894 .9735
0.2 .1987 .9934
0.1 .09983 .9983

0.05 .049979 .99958
0.01 .00999983 .999983
0.001 .0099999983 .9999983

h sin h sin h
h

´0.4 ´.3894 .9735
´0.2 ´.1987 .9934
´0.1 ´.09983 .9983

´0.05 ´.049979 .99958
´0.01 ´.00999983 .999983

´0.001 ´.0099999983 .9999983

suggests the same guess. Here is an argument that shows that the guess really is correct.
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§§§ Proof that lim
hÑ0

sin h
h = 1:

h

O

P

Q

R
S

cosh
1

1
sin h

tanh

The circle in the figure above has radius 1. Hence

|OP| = |OR| = 1 |PS| = sin h
|OS| = cos h |QR| = tan h

Now we can use a few geometric facts about this figure to establish both an upper bound
and a lower bound on sin h

h with both the upper and lower bounds tending to 1 as h tends
to 0. So the squeeze theorem will tell us that sin h

h also tends to 1 as h tends to 0.

• The triangle OPR has base 1 and height sin h, and hence

area of △OPR = 1
2 ˆ 1 ˆ sin h =

sin h
2

.

• The triangle OQR has base 1 and height tan h, and hence

area of △OQR = 1
2 ˆ 1 ˆ tan h =

tan h
2

.

• The “piece of pie” OPR cut out of the circle is the fraction h
2π of the whole circle

(since the angle at the corner of the piece of pie is h radians and the angle for the
whole circle is 2π radians). Since the circle has radius 1 we have

area of pie OPR =
h

2π
¨ (area of circle) =

h
2π

π ¨ 12 =
h
2

Now the triangle OPR is contained inside the piece of pie OPR. and so the area of the
triangle is smaller than the area of the piece of pie. Similarly, the piece of pie OPR is
contained inside the triangle OQR. Thus we have

area of triangle OPR ď area of pie OPR ď area of triangle OQR
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Substituting in the areas we worked out gives

sin h
2

ď
h
2

ď
tan h

2

which cleans up to give

sin h ď h ď
sin h
cos h

We rewrite these two inequalities so that sin h
h appears in both.

• Since sin h ď h, we have that
sin h

h
ď 1.

• Since h ď
sin h
cos h

we have that cos h ď
sin h

h
.

Thus we arrive at the “squeezable” inequality

cos h ď
sin h

h
ď 1

We know26 that

lim
hÑ0

cos h = 1.

Since sin h
h is sandwiched between cos h and 1, we can apply the squeeze theorem for limits

(Theorem 1.4.17) to deduce the following lemma:

lim
hÑ0

sin h
h

= 1.

Lemma 2.8.1.

Since this argument took a bit of work, perhaps we should remind ourselves why we
needed it in the first place. We were computing

d
dx

tsin xu

ˇ

ˇ

ˇ

x=0
= lim

hÑ0

sin h ´ sin 0
h

= lim
hÑ0

sin h
h

(This is why!)

= 1

This concludes Step 1. We now know that d
dx sin x

ˇ

ˇ

x=0 = 1. The remaining steps are easier.

26 Again, refresh your memory by looking up Appendix A.5.
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§§ Step 2: d
dxtcos xu

ˇ

ˇ

x=0

By definition, the derivative of cos x evaluated at x = 0 is

lim
hÑ0

cos h ´ cos 0
h

= lim
hÑ0

cos h ´ 1
h

Fortunately we don’t have to wade through geometry like we did for the previous step.
Instead we can recycle our work and massage the above limit to rewrite it in terms of
expressions involving sin h

h . Thanks to Lemma 2.8.1 the work is then easy.
We’ll show you two ways to proceed — one uses a method similar to “multiplying

by the conjugate” that we have already used a few times (see Example 1.4.16 and 2.2.9 ),
while the other uses a nice trick involving the double–angle formula27.

§§§ Method 1 — Multiply by the “Conjugate”

Start by multiplying the expression inside the limit by 1, written as
cos h + 1
cos h + 1

:

cos h ´ 1
h

=
cos h ´ 1

h
¨

cos h + 1
cos h + 1

=
cos2 h ´ 1

h(1 + cos h)
(
since (a ´ b)(a + b) = a2

´ b2)

= ´
sin2 h

h(1 + cos h)
(since sin2 h + cos2 h = 1)

= ´
sin h

h
¨

sin h
1 + cos h

Now we can take the limit as h Ñ 0 via Lemma 2.8.1.

lim
hÑ0

cos h ´ 1
h

= lim
hÑ0

(
´ sin h

h
¨

sin h
1 + cos h

)

= ´ lim
hÑ0

(
sin h

h

)
¨ lim

hÑ0

(
sin h

1 + cos h

)

= ´1 ¨
0
2

= 0

§§§ Method 2 — via the Double Angle Formula

The other way involves the double angle formula28,

cos 2θ = 1 ´ 2 sin2(θ) or cos 2θ ´ 1 = ´2 sin2(θ)

27 See Appendix A.14 if you have forgotten. You should also recall that sin2 θ + cos2 θ = 1. Sorry for
nagging.

28 We hope you looked this up in in Appendix A.14. Nag.
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Setting θ = h/2, we have

cos h ´ 1
h

=
´2
(

sin h
2

)2

h

Now this begins to look like sin h
h , except that inside the sin(¨) we have h/2. So, setting

θ = h/2,

cos h ´ 1
h

= ´
sin2 θ

θ
= ´θ ¨

sin2 θ

θ2

= ´θ ¨
sin θ

θ
¨

sin θ

θ

When we take the limit as h Ñ 0, we are also taking the limit as θ = h/2 Ñ 0, and so

lim
hÑ0

cos h ´ 1
h

= lim
θÑ0

[
´θ ¨

sin θ

θ
¨

sin θ

θ

]

= lim
θÑ0

[´θ] ¨ lim
θÑ0

[
sin θ

θ

]
¨ lim

θÑ0

[
sin θ

θ

]

= 0 ¨ 1 ¨ 1
= 0

where we have used the fact that lim
hÑ0

sin h
h

= 1 and that the limit of a product is the

product of limits (i.e. Lemma 2.8.1 and Theorem 1.4.2).
Thus we have now produced two proofs of the following lemma:

lim
hÑ0

cos h ´ 1
h

= 0

Lemma 2.8.2.

Again, there has been a bit of work to get to here, so we should remind ourselves why
we needed it. We were computing

d
dx

tcos xu

ˇ

ˇ

ˇ

x=0
= lim

hÑ0

cos h ´ cos 0
h

= lim
hÑ0

cos h ´ 1
h

= 0

Armed with these results we can now build up the derivatives of sine and cosine.
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§§ Step 3: d
dxtsin xu and d

dxtcos xu for General x

To proceed to the general derivatives of sin x and cos x we are going to use the above two
results and a couple of trig identities. Remember the addition formulae29

sin(a + b) = sin(a) cos(b) + cos(a) sin(b)
cos(a + b) = cos(a) cos(b) ´ sin(a) sin(b)

To compute the derivative of sin(x) we just start from the definition of the derivative:

d
dx

sin x = lim
hÑ0

sin(x + h) ´ sin x
h

= lim
hÑ0

sin x cos h + cos x sin h ´ sin x
h

= lim
hÑ0

[
sin x

cos h ´ 1
h

+ cos x
sin h ´ 0

h

]

= sin x lim
hÑ0

cos h ´ 1
h

+ cos x lim
hÑ0

sin h ´ 0
h

= sin x
[

d
dx

cos x
]

x=0
looooooomooooooon

=0

+ cos x
[

d
dx

sin x
]

x=0
looooooomooooooon

=1

= cos x

The computation of the derivative of cos x is very similar.

d
dx

cos x = lim
hÑ0

cos(x + h) ´ cos x
h

= lim
hÑ0

cos x cos h ´ sin x sin h ´ cos x
h

= lim
hÑ0

[
cos x

cos h ´ 1
h

´ sin x
sin h ´ 0

h

]

= cos x lim
hÑ0

cos h ´ 1
h

´ sin x lim
hÑ0

sin h ´ 0
h

= cos x
[

d
dx

cos x
]

x=0
looooooomooooooon

=0

´ sin x
[

d
dx

sin x
]

x=0
looooooomooooooon

=1

= ´ sin x

We have now found the derivatives of both sin x and cos x, provided x is measured in radians.

29 You really should. Look this up in Appendix A.8 if you have forgotten.

154



DERIVATIVES 2.8 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

d
dx

sin x = cos x
d
dx

cos x = ´ sin x

The above formulas hold provided x is measured in radians.

Lemma 2.8.3.

These formulae are pretty easy to remember — applying d
dx to sin x and cos x just

exchanges sin x and cos x, except for the minus sign30 in the derivative of cos x.

Remark 2.8.4 (Optional — Another derivation of d
dx cos x = ´ sin x). We remark that,

once one knows that d
dx sin x = cos x, it is easy to use it and the trig identity cos(x) =

sin
(

π
2 ´ x

)
to derive d

dx cos x = ´ sin x. Here is how31.

d
dx

cos x = lim
hÑ0

cos(x + h) ´ cos x
h

= lim
hÑ0

sin
(

π
2 ´ x ´ h) ´ sin

(
π
2 ´ x

)

h

= ´ lim
h1Ñ0

sin
(
x1 + h1) ´ sin(x1)

h1
with x1 = π

2 ´ x, h1 = ´h

= ´
d
dx1

sin x1
ˇ

ˇ

ˇ

x1=
π
2 ´x

= ´ cos
(

π
2 ´ x

)

= ´ sin x

Note that, if x is measured in degrees, then the formulas of Lemma 2.8.3 are wrong.
There are similar formulas, but we need the chain rule to build them — that is the subject
of the next section. But first we should find the derivatives of the other trig functions.

§§ Step 4: the Remaining Trigonometric Functions

It is now an easy matter to get the derivatives of the remaining trigonometric functions
using basic trig identities and the quotient rule. Remember32 that

tan x =
sin x
cos x

cot x =
cos x
sin x

=
1

tan x

csc x =
1

sin x
sec x =

1
cos x

30 There is a bad pun somewhere in here about sine errors and sign errors.
31 We thank Serban Raianu for suggesting that we include this.
32 You really should. If you do not then take a quick look at the appropriate appendix.
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So, by the quotient rule,

d
dx

tan x =
d
dx

sin x
cos x

=

cos x
hkkkkikkkkj( d

dx sin x
)

cos x ´ sin x

´ sin x
hkkkkikkkkj( d

dx cos x
)

cos2 x
= sec2 x

d
dx

csc x =
d
dx

1
sin x

= ´

cos x
hkkkkikkkkj( d

dx sin x
)

sin2 x
= ´ csc x cot x

d
dx

sec x =
d
dx

1
cos x

= ´

´ sin x
hkkkkikkkkj( d

dx cos x
)

cos2 x
= sec x tan x

d
dx

cot x =
d
dx

cos x
sin x

=

´ sin x
hkkkkikkkkj( d

dx cos x
)

sin x ´ cos x

cos x
hkkkkikkkkj( d

dx sin x
)

sin2 x
= ´ csc2 x

§§ Summary

To summarise all this work, we can write this up as a theorem:

The derivatives of sin x and cos x are

d
dx

sin x = cos x
d
dx

cos x = ´ sin x

Consequently the derivatives of the other trigonometric functions are

d
dx

tan x = sec2 x
d
dx

cot x = ´ csc2 x

d
dx

csc x = ´ csc x cot x
d
dx

sec x = sec x tan x

Theorem 2.8.5 (Derivatives of trigonometric functions).

Of these 6 derivatives you should really memorise those of sine, cosine and tangent.
We certainly expect you to be able to work out those of cotangent, cosecant and secant.

2.9 Ĳ One More Tool – the Chain Rule

We have built up most of the tools that we need to express derivatives of complicated
functions in terms of derivatives of simpler known functions. We started by learning how
to evaluate

• derivatives of sums, products and quotients
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• derivatives of constants and monomials

These tools allow us to compute derivatives of polynomials and rational functions. In the
previous sections, we added exponential and trigonometric functions to our list. The final
tool we add is called the chain rule. It tells us how to take the derivative of a composition
of two functions. That is if we know f (x) and g(x) and their derivatives, then the chain
rule tells us the derivative of f

(
g(x)

)
.

Before we get to the statement of the rule, let us look at an example showing how such
a composition might arise (in the “real-world”).

Example 2.9.1

You are out in the woods after a long day of mathematics and are walking towards your
camp fire on a beautiful still night. The heat from the fire means that the air temperature
depends on your position. Let your position at time t be x(t). The temperature of the
air at position x is f (x). What instantaneous rate of change of temperature do you feel at
time t?

• Because your position at time t is x = x(t), the temperature you feel at time t is
F(t) = f

(
x(t)

)
.

• The instantaneous rate of change of temperature that you feel is F1(t). We have a
complicated function, F(t), constructed by composing two simpler functions, x(t)
and f (x).

• We wish to compute the derivative, F1(t) = d
dt f (x(t)), of the complicated function

F(t) in terms of the derivatives, x1(t) and f 1(x), of the two simple functions. This is
exactly what the chain rule does.

Example 2.9.1
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§§ Statement of the Chain Rule

Let a P R and let g(x) be a function that is differentiable at x = a. Now let f (u)
be a function that is differentiable at u = g(a). Then the function F(x) = f (g(x))
is differentiable at x = a and

F1(a) = f 1
(

g(a)
)

g1(a)

Theorem 2.9.2 (The chain rule — version 1).

Here, as was the case earlier in this chapter, we have been very careful to give the point
at which the derivative is evaluated a special name (i.e. a). But of course this evaluation
point can really be any point (where the derivative is defined). So it is very common to
just call the evaluation point “x” rather than give it a special name like “a”, like this:

Let f and g be differentiable functions then

d
dx

f
(

g(x)
)
= f 1

(
g(x)

)
¨ g1(x)

Theorem 2.9.3 (The chain rule — version 2).

Notice that when we form the composition f
(

g(x)
)

there is an “outside” function
(namely f (x)) and an “inside” function (namely g(x)). The chain rule tells us that when
we differentiate a composition that we have to differentiate the outside and then multiply
by the derivative of the inside.

d
dx

f
(

g(x)
)
= f 1

(
g(x)

)
looomooon

diff outside

¨ g1(x)
loomoon

diff inside

Here is another statement of the chain rule which makes this idea more explicit.

Let y = f (u) and u = g(x) be differentiable functions, then

dy
dx

=
dy
du

¨
du
dx

Theorem 2.9.4 (The chain rule — version 3).

This particular form is easy to remember because it looks like we can just “cancel” the
du between the two terms.

dy
dx

=
dy

��du
¨
��du
dx
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Of course, du is not, by itself, a number or variable33 that can be cancelled. But this is
still a good memory aid.

The hardest part about applying the chain rule is recognising when the function you
are trying to differentiate is really the composition of two simpler functions. This takes a
little practice. We can warm up with a couple of simple examples.

Example 2.9.5

Let f (u) = u5 and g(x) = sin(x). Then set F(x) = f
(

g(x)
)
=
(

sin(x)
)5. To find the

derivative of F(x) we can simply apply the chain rule — the pieces of the composition
have been laid out for us. Here they are.

f (u) = u5 f 1(u) = 5u4

g(x) = sin(x) g1(x) = cos x

We now just put them together as the chain rule tells us

dF
dx

= f 1
(

g(x)
)

¨ g1(x)

= 5
(

g(x)
)4

¨ cos(x) since f 1(u) = 5u4

= 5
(

sin(x)
)4

¨ cos(x)

Notice that it is quite easy to extend this to any power. Set f (u) = un. Then follow the
same steps and we arrive at

F(x) = (sin(x))n F1(x) = n
(

sin(x)
)n´1 cos(x)

Example 2.9.5

This example shows one of the ways that the chain rule appears very frequently —
when we need to differentiate the power of some simpler function. More generally we
have the following.

Example 2.9.6

Let f (u) = un and let g(x) be any differentiable function. Set F(x) = f
(

g(x)
)
= g(x)n.

Then

dF
dx

=
d
dx
(

g(x)n) = ng(x)n´1
¨ g1(x)

This is precisely the result in Example 2.6.6 and Lemma 2.6.7.
Example 2.9.6

33 In this context du is called a differential. There are ways to understand and manipulate these in calculus
but they are beyond the scope of this course.
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Example 2.9.7

Let f (u) = cos(u) and g(x) = 3x ´ 2. Find the derivative of

F(x) = f
(

g(x)
)
= cos(3x ´ 2).

Again we should approach this by first writing down f and g and their derivatives
and then putting everything together as the chain rule tells us.

f (u) = cos(u) f 1(u) = ´ sin(u)
g(x) = 3x ´ 2 g1(x) = 3

So the chain rule says

F1(x) = f 1
(

g(x)
)

¨ g1(x)

= ´ sin
(

g(x)
)

¨ 3

= ´3 sin(3x ´ 2)

Example 2.9.7

This example shows a second way that the chain rule appears very frequently — when
we need to differentiate some function of ax + b. More generally we have the following.

Example 2.9.8

Let a, b P R and let f (x) be a differentiable function. Set g(x) = ax + b. Then

d
dx

f (ax + b) =
d
dx

f
(

g(x)
)

= f 1
(

g(x)
)

¨ g1(x)
= f 1(ax + b) ¨ a

So the derivative of f (ax + b) with respect to x is just a f 1(ax + b).
Example 2.9.8

The above is a very useful result that follows from the chain rule, so let’s make it a corol-
lary to highlight it.

Let a, b P R and let f (x) be a differentiable function, then

d
dx

f (ax + b) = a f 1(ax + b).

Corollary 2.9.9.
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Example 2.9.10 (Example 2.9.1, continued)

Let us now go back to our motivating campfire example. There we had

f (x) = temperature at position x
x(t) = position at time t
F(t) = f (x(t)) = temperature at time t

The chain rule gave

F1(t) = f 1
(
x(t)

)
¨ x1(t)

Notice that the units of measurement on both sides of the equation agree — as indeed
they must. To see this, let us assume that t is measured in seconds, that x(t) is measured
in metres and that f (x) is measured in degrees. Because of this F(x(t)) must also be
measured in degrees (since it is a temperature).

What about the derivatives? These are rates of change. So

• F1(t) has units degrees
second ,

• f 1(x) has units degrees
metre , and

• x1(t) has units metre
second .

Hence the product

f 1
(
x(t)

)
¨ x1(t) has units =

degrees
metre

¨
metre

second
=

degrees
second

.

has the same units as F1(t). So the units on both sides of the equation agree. Checking that
the units on both sides of an equation agree is a good check of consistency, but of course
it does not prove that both sides are in fact the same.

Example 2.9.10

§§ (optional) — Derivation of the Chain Rule

First, let’s review what our goal is. We have been given a function g(x), that is differen-
tiable at some point x = a, and another function f (u), that is differentiable at the point
u = b = g(a). We have defined the composite function F(x) = f

(
g(x)

)
and we wish to

show that

F1(a) = f 1
(

g(a)
)

¨ g1(a)

Before we can compute F1(a), we need to set up some ground work, and in particular
the definitions of our given derivatives:

f 1(b) = lim
HÑ0

f (b + H) ´ f (b)
H

and g1(a) = lim
hÑ0

g(a + h) ´ g(a)
h

.
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We are going to use similar manipulation tricks as we did back in the proofs of the arith-
metic of derivatives in Section 2.5. Unfortunately, we have already used up the symbols
“F” and “H”, so we are going to make use the Greek letters γ, φ.

As was the case in our derivation of the product rule it is convenient to introduce a
couple of new functions. Set

φ(H) =
f (b + H) ´ f (b)

H

Then we have

lim
HÑ0

φ(H) = f 1(b) = f 1
(

g(a)
)

since b = g(a), (2.9.1)

and we can also write (with a little juggling)

f (b + H) = f (b) + Hφ(H)

Similarly set

γ(h) =
g(a + h) ´ g(a)

h

which gives us

lim
hÑ0

γ(h) = g1(a) and g(a + h) = g(a) + hγ(h).

Now we can start computing

F1(a) = lim
hÑ0

F(a + h) ´ F(a)
h

= lim
hÑ0

f
(

g(a + h)
)

´ f
(

g(a)
)

h

We know that g(a) = b and g(a + h) = g(a) + h γ(h), so

F1(a) = lim
hÑ0

f
(

g(a) + hγ(h)
)

´ f
(

g(a)
)

h

= lim
hÑ0

f (b + hγ(h)) ´ f (b)
h

Now for the sneaky bit. We can turn f (b + hγ(h)) into f (b + H) by setting

H = hγ(h)

Now notice that as h Ñ 0 we have

lim
hÑ0

H = lim
hÑ0

h ¨ γ(h)

= lim
hÑ0

h ¨ lim
hÑ0

γ(h)

= 0 ¨ g1(a) = 0
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So as h Ñ 0 we also have H Ñ 0.
We now have

F1(a) = lim
hÑ0

f
(
b + H

)
´ f (b)

h

= lim
hÑ0

f
(
b + H

)
´ f (b)

H
looooooooomooooooooon

=φ(H)

¨
H
h

loomoon

=γ(h)

if H = hγ(h) ‰ 0

= lim
hÑ0

(
φ(H) ¨ γ(h)

)

= lim
hÑ0

φ(H) ¨ lim
hÑ0

γ(h) since H Ñ 0 as h Ñ 0

= lim
HÑ0

φ(H) ¨ lim
hÑ0

γ(h) = f 1(b) ¨ g1(a)

This is exactly the RHS of the chain rule. It is possible to have H = 0 in the second line
above. But that possibility is easy to deal with:

• If g1(a) ‰ 0, then, since limhÑ0 γ(h) = g1(a), H = hγ(h) cannot be 0 for small
nonzero h. Technically, there is an h0 ą 0 such that H = hγ(h) ‰ 0 for all 0 ă |h| ă h0.
In taking the limit h Ñ 0, above, we need only consider 0 ă |h| ă h0 and so, in this
case, the above computation is completely correct.

• If g1(a) = 0, the above computation is still fine provided we exclude all h’s for which
H = hγ(h) ‰ 0. When g1(a) = 0, the right hand side, f 1

(
g(a)

)
¨ g1(a), of the chain

rule is 0. So the above computation gives

lim
hÑ0

γ(h)‰0

f
(
b + H

)
´ f (b)

h
= f 1

(
g(a)

)
¨ g1(a) = 0

On the other hand, when H = 0, we have f
(
b + H

)
´ f (b) = 0. So

lim
hÑ0

γ(h)=0

f
(
b + H

)
´ f (b)

h
= 0

too. That’s all we need.

§§ Chain Rule Examples

We’ll now use the chain rule to compute some more derivatives.

Example 2.9.11

Find d
dx
(
1 + 3x

)75.
This is a concrete version of Example 2.9.8. We are to find the derivative of a function

that is built up by first computing 1 + 3x and then taking the 75th power of the result. So
we set

f (u) = u75 f 1(u) = 75u74

g(x) = 1 + 3x g1(x) = 3

F(x) = f
(

g(x)
)
= g(x)75 =

(
1 + 3x

)75
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By the chain rule

F1(x) = f 1
(

g(x)
)

g1(x) = 75 g(x)74 g1(x) = 75
(
1 + 3x

)74
¨ 3

= 225
(
1 + 3x

)74

Example 2.9.11

Example 2.9.12

Find d
dx sin(x2).

In this example we are to compute the derivative of sin with a (slightly) complicated
argument. So we apply the chain rule with f being sin and g(x) being the complicated
argument. That is, we set

f (u) = sin u f 1(u) = cos u

g(x) = x2 g1(x) = 2x

F(x) = f
(

g(x)
)
= sin

(
g(x)

)
= sin(x2)

By the chain rule

F1(x) = f 1
(

g(x)
)

g1(x) = cos
(

g(x)
)

g1(x) = cos(x2) ¨ 2x

= 2x cos(x2)

Example 2.9.12

Example 2.9.13

Find d
dx

3
a

sin(x2).
In this example we are to compute the derivative of the cube root of a (moderately)

complicated argument, namely sin(x2). So we apply the chain rule with f being “cube
root” and g(x) being the complicated argument. That is, we set

f (u) = 3
?

u = u
1
3 f 1(u) = 1

3 u´
2
3

g(x) = sin(x2) g1(x) = 2x cos(x2)

F(x) = f
(

g(x)
)
= 3

b

g(x) = 3
b

sin(x2)

In computing g1(x) here, we have already used the chain rule once (in Example 2.9.12). By
the chain rule

F1(x) = f 1
(

g(x)
)

y1(x) = 1
3 g(x)´

2
3 ¨ 2x cos(x2)

=
2x
3

cos(x2)

[sin(x2)]
2
3
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Example 2.9.13

Example 2.9.14

Find the derivative of d
dx f (g(h(x))).

This is very similar to the previous example. Let us set F(x) = f (g(h(x))) with u =
g(h(x)) then the chain rule tells us

dF
dx

=
d f
du

¨
du
dx

= f 1(g(h(x))) ¨
d
dx

g(h(x))

We now just apply the chain rule again

= f 1(g(h(x))) ¨ g1(h(x)) ¨ h1(x).

Indeed it is not too hard to generalise further (in the manner of Example 2.6.6 to find
the derivative of the composition of 4 or more functions (though things start to become
tedious to write down):

d
dx

f1( f2( f3( f4(x)))) = f 1
1( f2( f3( f4(x)))) ¨

d
dx

f2( f3( f4(x)))

= f 1
1( f2( f3( f4(x)))) ¨ f 1

2( f3( f4(x))) ¨
d
dx

f3( f4(x))

= f 1
1( f2( f3( f4(x)))) ¨ f 1

2( f3( f4(x))) ¨ f 1
3( f4(x)) ¨ f 1

4(x)

Example 2.9.14

Example 2.9.15

We can also use the chain rule to recover Corollary 2.4.6 and from there we can use the
product rule to recover the quotient rule.

We want to differentiate F(x) = 1
g(x) so set f (u) = 1

u and u = g(x). Then the chain rule
tells us

d
dx

"

1
g(x)

*

=
dF
dx

=
d f
du

¨
du
dx

=
´1
u2 ¨ g1(x)

= ´
g1(x)
g(x)2 .
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Once we know this, a quick application of the product rule will give us the quotient rule.

d
dx

"

f (x)
g(x)

*

=
d
dx

"

f (x) ¨
1

g(x)

*

use PR

= f 1(x) ¨
1

g(x)
+ f (x) ¨

d
dx

"

1
g(x)

*

use the result from above

= f 1(x) ¨
1

g(x)
´ f (x) ¨

g1(x)
g(x)2 place over a common denominator

=
f 1(x) ¨ g(x) ´ f (x) ¨ g1(x)

g(x)2

which is exactly the quotient rule.
Example 2.9.15

Example 2.9.16

Compute the following derivative:

d
dx

cos

(
x5

?
3 + x6

(4 + x2)3

)

This time we are to compute the derivative of cos with a really complicated argument.

• So, to start, we apply the chain rule with g(x) = x5
?

3+x6

(4+x2)3 being the really complicated

argument and f being cos. That is, f (u) = cos(u). Since f 1(u) = ´ sin(u), the chain
rule gives

d
dx

cos
(

x5
?

3 + x6

(4 + x2)3

)
= ´ sin

(
x5

?
3 + x6

(4 + x2)3

)
d
dx

#

x5
?

3 + x6

(4 + x2)3

+

• This reduced our problem to that of computing the derivative of the really compli-
cated argument x5

?
3+x6

(4+x2)3 . We can think of the argument as being built up out of three

pieces, namely x5, multiplied by
?

3 + x6, divided by (4 + x2)
3, or, equivalently, mul-

tiplied by (4 + x2)
´3. So we may rewrite x5

?
3+x6

(4+x2)3 as x5 (3 + x6)1/2
(4 + x2)

´3, and

then apply the product rule to reduce the problem to that of computing the deriva-
tives of the three pieces.

• Here goes (recall Example 2.6.6):

d
dx
[
x5 (3 + x6)

1/2
(4 + x2)

´3]
=

d
dx
[
x5]

¨ (3 + x6)
1/2

¨ (4 + x2)
´3

+ x5
¨

d
dx
[
(3 + x6)

1/2]
¨ (4 + x2)

´3

+ x5
¨ (3 + x6)

1/2
¨

d
dx
[
(4 + x2)

´3]
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This has reduced our problem to computing the derivatives of x5, which is easy, and
of (3 + x6)

1/2 and (4 + x2)
´3, both of which can be done by the chain rule. Doing so,

d
dx
[
x5 (3 + x6)

1/2
(4 + x2)

´3]
=

5x4
hkkikkj

d
dx
[
x5]

¨(3 + x6)
1/2

¨ (4 + x2)
´3

+ x5
¨

1
2 (3+x6)´1/2¨6x5

hkkkkkkkkikkkkkkkkj

d
dx
[
(3 + x6)

1/2]
¨(4 + x2)

´3

+ x5
¨ (3 + x6)

1/2
¨

´3(4+x2)
´4

¨2x
hkkkkkkkkikkkkkkkkj

d
dx
[
(4 + x2)

´3]

• Now we can clean things up in a sneaky way by observing

– differentiating x5, to get 5x4, is the same as multiplying x5 by 5
x , and

– differentiating (3 + x6)
1
2 to get 1

2(3 + x6)´1/2 ¨ 6x5 is the same as multiplying

(3 + x6)
1
2 by 3x5

3+x6 , and

– differentiating (4 + x2)
´3 to get ´3(4 + x2)

´4
¨ 2x is the same as multiplying

(4 + x2)
´3 by ´ 6x

4+x2 .

Using these sneaky tricks we can write our solution quite neatly:

d
dx

cos
(

x5
?

3 + x6

(4 + x2)3

)
= ´ sin

(
x5

?
3 + x6

(4 + x2)3

)
x5

?
3 + x6

(4 + x2)3

"

5
x
+

3x5

3 + x6 ´
6x

4 + x2

*

• This method of cleaning up the derivative of a messy product is actually something
more systematic in disguise — namely logarithmic differentiation. We will come to
this later.

Example 2.9.16

2.10 Ĳ The Natural Logarithm

The chain rule opens the way to understanding derivatives of more complicated function.
Not only compositions of known functions as we have seen the examples of the previous
section, but also functions which are defined implicitly.

Consider the logarithm base e — loge(x) is the power that e must be raised to to give
x. That is, loge(x) is defined by

eloge x = x
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i.e. — it is the inverse of the exponential function with base e. Since this choice of base
works so cleanly and easily with respect to differentiation, this base turns out to be (ar-
guably) the most natural choice for the base of the logarithm. And as we saw in our
whirlwind review of logarithms in Section 2.7, it is easy to use logarithms of one base to
compute logarithms with another base:

logq x =
loge x
loge q

So we are (relatively) free to choose a base which is convenient for our purposes.
The logarithm with base e, is called the “natural logarithm”. The “naturalness” of loga-

rithms base e is exactly that this choice of base works very nicely in calculus (and so wider
mathematics) in ways that other bases do not34. There are several different “standard”
notations for the logarithm base e;

loge x = log x = ln x.

We recommend that you be able to recognise all of these.
In this text we will write the natural logarithm as “log” with no base. The reason for

this choice is that base e is the standard choice of base for logarithms in mathematics35 The
natural logarithm inherits many properties of general logarithms36. So, for all x, y ą 0 the
following hold:

• elog x = x,

• for any real number X, log
(
eX) = X,

• for any a ą 1, loga x =
log x
log a and log x =

loga x
loga e

• log 1 = 0, log e = 1

• log(xy) = log x + log y

• log
( x

y
)
= log x ´ log y, log

( 1
y
)
= ´ log y

• log(xX) = X log x

• lim
xÑ8

log x = 8, lim
xÑ0

log x = ´8

And finally we should remember that log x has domain (i.e. is defined for) x ą 0 and
range (i.e. takes all of the values in) the set of all real numbers.

34 The interested reader should head to Wikipedia and look up the natural logarithm.
35 In other disciplines other bases are natural; in computer science, since numbers are stored in binary it

makes sense to use the binary logarithm — i.e. base 2. While in some sciences and finance, it makes
sense to use the decimal logarithm — i.e. base 10.

36 Again take a quick look at the whirlwind review of logarithms in Section 2.7.
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x

y

1 2 3 4

0.5

1.0

1.5

−0.5

−1.0

−1.5

y = ln x

Figure 2.10.1.

To compute the derivative of log x we could attempt to start with the limit definition
of the derivative

d
dx

log x = lim
hÑ0

log(x + h) ´ log(x)
h

= lim
hÑ0

log((x + h)/x)
h

= um. . .

This doesn’t look good. But all is not lost — we have the chain rule, and we know that the
logarithm satisfies the equation:

x = elog x

Since both sides of the equation are the same function, both sides of the equation have the
same derivative. i.e. we are using37

if f (x) = g(x) for all x, then f 1(x) = g1(x)

So now differentiate both sides:
d
dx

x =
d
dx

elog x

The left-hand side is easy, and the right-hand side we can process using the chain rule
with f (u) = eu and u = log x.

1 =
d f
du

¨
du
dx

= eu
¨

d
dx

log x
looomooon

what we want to compute

37 Notice that just because the derivatives are the same, doesn’t mean the original functions are the same.
Both f (x) = x2 and g(x) = x2 + 3 have derivative f 1(x) = g1(x) = 2x, but f (x) ‰ g(x).
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Recall that eu = elog x = x, so

1 = x ¨
d
dx

log x
looomooon

now what?

We can now just rearrange this equation to make the thing we want the subject:

d
dx

log x =
1
x

Thus we have proved:

d
dx

log x =
1
x

where log x is the logarithm base e.

Theorem 2.10.1.

Example 2.10.2

Let f (x) = log 3x. Find f 1(x).
There are two ways to approach this — we can simplify then differentiate, or differen-

tiate and then simplify. Neither is difficult.

• Simplify and then differentiate:

f (x) = log 3x log of a product
= log 3 + log x

f 1(x) =
d
dx

log 3 +
d
dx

log x

=
1
x

.

• Differentiation and then simplify:

f 1(x) =
d
dx

log(3x) chain rule

=
1

3x
¨ 3

=
1
x

Example 2.10.2
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Example 2.10.3 (The derivative of log cx)

Notice that we can extend the previous example for any positive constant — not just 3.
Let c ą 0 be a constant, then

d
dx

log cx =
d
dx

(log c + log x)

=
1
x

Example 2.10.3

Example 2.10.4 (The derivative of log |x|)

We can push this further still. Let g(x) = log |x|, then38

• If x ą 0, |x| = x and so

g1(x) =
d
dx

log x =
1
x

• If x ă 0 then |x| = ´x. If |h| is strictly smaller than |x|, then we also have that
x + h ă 0 and |x + h| = ´(x + h) = |x| ´ h. Write X = |x| and H = ´h. Then, by the
definition of the derivative,

g1(x) = lim
hÑ0

log |x + h| ´ log |x|

h
= lim

hÑ0

log(|x| ´ h) ´ log |x|

h

= lim
HÑ0

log(X + H) ´ log X
´H

= ´ lim
HÑ0

log(X + H) ´ log X
H

= ´
d
dX

log X = ´
1
X

= ´
1

|x|

=
1
x

• Since log 0 is undefined, g1(0) does not exist.

Putting this together gives:

d
dx

log |x| =
1
x

Example 2.10.4

Example 2.10.5 (The derivative of xa)

Just after Corollary 2.6.17, we said that we would, in the future, find the derivative of xa

38 It’s probably a good moment to go back and look at Example 2.2.10.
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for all real numbers. The future is here. Let x ą 0 and a be any real number. Exponentiat-
ing both sides of log

(
xa) = a log x gives us xa = ea log x and then

d
dx

xa =
d
dx

ea log x = ea log x d
dx

(a log x) by the chain rule

=
a
x

ea log x =
a
x

xa

= axa´1

as expected.
Example 2.10.5

We can extend Theorem 2.10.1 to compute the derivative of logarithms of other bases
in a straightforward way. Since for any positive a ‰ 1:

loga x =
log x
log a

=
1

log a
¨ log x since a is a constant

d
dx

loga x =
1

log a
¨

1
x

§§ Back to d
dxax

We can also now finally get around to computing the derivative of ax (which we started
to do back in Section 2.7).

f (x) = ax take log of both sides
log f (x) = x log a exponentiate both sides base e

f (x) = ex log a chain rule

f 1(x) = ex log a
¨ log a

= ax
¨ log a

Notice that we could have also done the following:

f (x) = ax take log of both sides
log f (x) = x log a differentiate both sides

d
dx

(log f (x)) = log a

We then process the left-hand side using the chain rule

f 1(x) ¨
1

f (x)
= log a

f 1(x) = f (x) ¨ log a = ax
¨ log a

We will see d
dx log f (x) more below in the subsection on “logarithmic differentiation”.

To summarise the results above:
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d
dx

ax = log a ¨ ax for any a ą 0

d
dx

loga x =
1

x ¨ log a
for any a ą 0, a ‰ 1

where log x is the natural logarithm.

Corollary 2.10.6.

Recall that we need the caveat a ‰ 1 because the logarithm base 1 is not well defined.
This is because 1x = 1 for any x. We do not need a similar caveat for the derivative of the
exponential because we know (recall Example 2.7.1)

d
dx

1x =
d
dx

1 = 0 while the above corollary tells us

= log 1 ¨ 1x = 0 ¨ 1 = 0.

§§ Logarithmic Differentiation

We want to go back to some previous slightly messy examples (Examples 2.6.6 and 2.6.18)
and now show you how they can be done more easily.

Example 2.10.7

Consider again the derivative of the product of 3 functions:

P(x) = F(x) ¨ G(x) ¨ H(x)

Start by taking the logarithm of both sides:

log P(x) = log (F(x) ¨ G(x) ¨ H(x))
= log F(x) + log G(x) + log H(x)

Notice that the product of functions on the right-hand side has become a sum of functions.
Differentiating sums is much easier than differentiating products. So when we differenti-
ate we have

d
dx

log P(x) =
d
dx

log F(x) +
d
dx

log G(x) +
d
dx

log H(x)

A quick application of the chain rule shows that d
dx log f (x) = f 1(x)/ f (x):

P1(x)
P(x)

=
F1(x)
F(x)

+
G1(x)
G(x)

+
H1(x)
H(x)

Multiply through by P(x) = F(x)G(x)H(x):

P1(x) =
(

F1(x)
F(x)

+
G1(x)
G(x)

+
H1(x)
H(x)

)
¨ F(x)G(x)H(x)

= F1(x)G(x)H(x) + F(x)G1(x)H(x) + F(x)G(x)H1(x)
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which is what found in Example 2.6.6 by repeated application of the product rule. The
above generalises quite easily to more than 3 functions.

Example 2.10.7

This same trick of “take a logarithm and then differentiate” — or logarithmic differentia-
tion — will work any time you have a product (or ratio) of functions.

Example 2.10.8

Let’s use logarithmic differentiation on the function from Example 2.6.18:

f (x) =
(
?

x ´ 1)(2 ´ x)(1 ´ x2)
?

x(3 + 2x)

Beware however, that we may only take the logarithm of positive numbers, and this f (x)
is often negative. For example, if 1 ă x ă 2, the factor (1 ´ x2) in the definition of f (x)
is negative while all of the other factors are positive, so that f (x) ă 0. None–the–less,
we can use logarithmic differentiation to find f 1(x), by exploiting the observation that
d
dx log | f (x)| = f 1(x)

f (x) . (To see this, use the chain rule and Example 2.10.4.) So we take the
logarithm of | f (x)| and expand.

log | f (x)| = log
|
?

x ´ 1| |2 ´ x| |1 ´ x2|
?

x|3 + 2x|

= log |
?

x ´ 1| + log |2 ´ x| + log |1 ´ x2
| ´ log(

?
x)

looomooon

= 1
2 log x

´ log |3 + 2x|

Now we can essentially just differentiate term-by-term:

d
dx

log | f (x)| =
d
dx

(
log |

?
x ´ 1| + log |2 ´ x| + log |1 ´ x2

| ´
1
2

log(x) ´ log |3 + 2x|

)

f 1(x)
f (x)

=
1/(2

?
x)

?
x ´ 1

+
´1

2 ´ x
+

´2x
1 ´ x2 ´

1
2x

´
2

3 + 2x

f 1(x) = f (x) ¨

(
1

2
?

x(
?

x ´ 1)
´

1
2 ´ x

´
2x

1 ´ x2 ´
1

2x
´

2
3 + 2x

)

=
(
?

x ´ 1)(2 ´ x)(1 ´ x2)
?

x(3 + 2x)
¨

(
1

2
?

x(
?

x ´ 1)
´

1
2 ´ x

´
2x

1 ´ x2 ´
1

2x
´

2
3 + 2x

)

just as we found previously.
Example 2.10.8

2.11 Ĳ Implicit Differentiation

Implicit differentiation is a simple trick that is used to compute derivatives of functions
either
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• when you don’t know an explicit formula for the function, but you know an equation
that the function obeys or

• even when you have an explicit, but complicated, formula for the function, and the
function obeys a simple equation.

The trick is just to differentiate both sides of the equation and then solve for the derivative
we are seeking. In fact we have already done this, without using the name “implicit
differentiation”, when we found the derivative of log x in the previous section. There we
knew that the function f (x) = log x satisfied the equation e f (x) = x for all x. That is, the
functions e f (x) and x are in fact the same function and so have the same derivative. So we
had

d
dx

e f (x) =
d
dx

x = 1

We then used the chain rule to get d
dx e f (x) = e f (x) f 1(x), which told us that f 1(x) obeys the

equation

e f (x) f 1(x) = 1 and we can now solve for f 1(x)

f 1(x) = e´ f (x) = e´ log x =
1
x

.

The typical way to get used to implicit differentiation is to play with problems involv-
ing tangent lines to curves. So here are a few examples finding the equations of tangent
lines to curves. Recall, from Theorem 2.3.2, that, in general, the tangent line to the curve
y = f (x) at

(
x0, y0

)
is y = f (x0) + f 1(x0)(x ´ x0) = y0 + f 1(x0)(x ´ x0).

Example 2.11.1

Find the equation of the tangent line to y = y3 + xy + x3 at x = 1.
This is a very standard sounding example, but made a little complicated by the fact

that the curve is given by a cubic equation — which means we cannot solve directly for y
in terms of x or vice versa. So we really do need implicit differentiation.

• First notice that when x = 1 the equation, y = y3 + xy + x3, of the curve simplifies
to y = y3 + y + 1 or y3 = ´1, which we can solve39: y = ´1. So we know that the
curve passes through (1, ´1) when x = 1.

• Now, to find the slope of the tangent line at (1, ´1), pretend that our curve is y =
f (x) so that f (x) obeys

f (x) = f (x)3 + x f (x) + x3

for all x. Differentiating both sides gives

f 1(x) = 3 f (x)2 f 1(x) + f (x) + x f 1(x) + 3x2

39 This type of luck rarely happens in the “real world”. But it happens remarkably frequently in textbooks,
problem sets and tests.
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• At this point we could isolate for f 1(x) and write it in terms of f (x) and x, but since
we only want answers when x = 1, let us substitute in x = 1 and f (1) = ´1 (since
the curve passes through (1, ´1)) and clean things up before doing anything else.

• Subbing in x = 1, f (1) = ´1 gives

f 1(1) = 3 f 1(1) ´ 1 + f 1(1) + 3 and so f 1(1) = ´
2
3

• The equation of the tangent line is

y = y0 + f 1(x0)(x ´ x0) = ´1 ´
2
3
(x ´ 1) = ´

2
3

x ´
1
3

We can further clean up the equation of the line to write it as 2x + 3y = ´1.
Example 2.11.1

In the previous example we replace y by f (x) in the middle of the computation. We don’t
actually have to do this. When we are writing out our solution we can remember that y is
a function of x. So we can start with

y = y3 + xy + x3

and differentiate remembering that y ” y(x)

y1 = 3y2y1 + xy1 + y + 3x2

And now substitute x = 1, y = ´1 to get

y1(1) = 3 ¨ y1(1) + y1(1) ´ 1 + 3 and so

y1(1) = ´
2
3

The next one is at the same time a bit easier (because it is a quadratic) and a bit harder
(because we are asked for the tangent at a general point on the curve, not a specific one).

Example 2.11.2

Let (x0, y0) be a point on the ellipse 3x2 + 5y2 = 7. Find the equation for the tangent lines
when x = 1 and y is positive. Then find an equation for the tangent line to the ellipse at a
general point (x0, y0).

Since we are not given a specific point x0 we are going to have to be careful with the
second half of this question.

• When x = 1 the equation simplifies to

3 + 5y2 = 7

5y2 = 4

y = ˘
2

?
5

.

We are only interested in positive y, so our point on the curve is (1, 2/
?

5).
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• Now we use implicit differentiation to find dy
dx at this point. First we pretend that we

have solved the curve explicitly, for some interval of x’s, as y = f (x). The equation
becomes

3x2 + 5 f (x)2 = 7 now differentiate
6x + 10 f (x) f 1(x) = 0

f 1(x) = ´
3x

5 f (x)

• When x = 1, y = 2/
?

5 this becomes

f 1(1) = ´
3

5 ¨ 2/
?

5
= ´

3
2
?

5

So the tangent line passes through (1, 2/
?

5) and has slope ´ 3
2

?
5
. Hence the tangent

line has equation

y = y0 + f 1(x0)(x ´ x0)

=
2

?
5

´
3

2
?

5
(x ´ 1)

=
7 ´ 3x
2
?

5
or equivalently

3x + 2
?

5y = 7

Now we should go back and do the same but for a general point on the curve (x0, y0):

• A good first step here is to sketch the curve. Since this is an ellipse, it is pretty
straight-forward.

3x2 + 5y2 = 7

(√
7/3, 0

)(
−
√

7/3, 0
)

3x3 + 5y2 = 7

(x0, y0)

• Notice that there are two points on the ellipse — the extreme right and left points
(x0, y0) = ˘

(?
7/3, 0

)
— at which the tangent line is vertical. In those two cases, the

tangent line is just x = x0.

• Since this is a quadratic for y, we could solve it explicitly to get

y = ˘

c

7 ´ 3x2

5
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and choose the positive or negative branch as appropriate. Then we could differen-
tiate to find the slope and put things together to get the tangent line.

But even in this relatively easy case, it is computationally cleaner, and hence less
vulnerable to mechanical errors, to use implicit differentiation. So that’s what we’ll
do.

• Now we could again “pretend” that we have solved the equation for the ellipse for
y = f (x) near (x0, y0), but let’s not do that. Instead (as we did just before this
example) just remember that when we differentiate y is really a function of x. So
starting from

3x2 + 5y2 = 7 differentiating gives
6x + 5 ¨ 2y ¨ y1 = 0

We can then solve this for y1:

y1 = ´
3x
5y

where y1 and y are both functions of x.

• Hence at the point (x0, y0) we have

y1
ˇ

ˇ

(x0,y0)
= ´

3x0

5y0

This is the slope of the tangent line at (x0, y0) and so its equation is

y = y0 + y1
¨ (x ´ x0)

= y0 ´
3x0

5y0
(x ´ x0)

We can simplify this by multiplying through by 5y0 to get

5y0y = 5y2
0 ´ 3x0x + 3x2

0

We can clean this up more by moving all the terms that contain x or y to the left-hand
side and everything else to the right:

3x0x + 5y0y = 3x2
0 + 5y2

0

But there is one more thing we can do, our original equation is 3x2 + 5y2 = 7 for all
points on the curve, so we know that 3x2

0 + 5y2
0 = 7. This cleans up the right-hand

side.

3x0x + 5y0y = 7

• In deriving this formula for the tangent line at (x0, y0) we have assumed that y0 ‰ 0.
But in fact the final answer happens to also work when y0 = 0 (which means x0 =
˘

?
7/3), so that the tangent line is x = x0.
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We can also check that our answer for general (x0, y0) reduces to our answer for x0 = 1.

• When x0 = 1 we worked out that y0 = 2/
?

5.

• Plugging this into our answer above gives

3x0x + 5y0y = 7 sub in (x0, y0) = (1, 2/
?

5) :

3x + 5
2

?
5

y = 7 clean up a little

3x + 2
?

5y = 7

as required.

Example 2.11.2

Example 2.11.3

At which points does the curve x2 ´ xy + y2 = 3 cross the x–axis? Are the tangent lines to
the curve at those points parallel?

This is a 2 part question — first the x-intercepts and then we need to examine tangent
lines.

• Finding where the curve crosses the x-axis is straight forward. It does so when y = 0.
This means x satisfies

x2
´ x ¨ 0 + 02 = 3 so x = ˘

?
3.

So the curve crosses the x–axis at two points
(

˘
?

3 , 0
)
.

• Now we need to find the tangent lines at those points. But we don’t actually need
the lines, just their slopes. Again we can pretend that near one of those points the
curve is y = f (x). Applying d

dx to both sides of x2 ´ x f (x) + f (x)2 = 3 gives

2x ´ f (x) ´ x f 1(x) + 2 f (x) f 1(x) = 0

etc etc.

• But let us stop “pretending”. Just make sure we remember that y is a function of x
when we differentiate:

x2
´ xy + y2 = 3 start with the curve, and differentiate

2x ´ xy1
´ y + 2yy1 = 0

Now substitute in the first point, x = +
?

3, y = 0:

2
?

3 ´
?

3y1 + 0 = 0
y1 = 2

And now do the second point x = ´
?

3, y = 0:

´2
?

3 +
?

3y1 + 0 = 0
y1 = 2

Thus the slope is the same at x =
?

3 and x = ´
?

3 and the tangent lines are parallel.
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Example 2.11.3

Okay — let’s get away from curves and do something a little different.

Example 2.11.4

You are standing at the origin. At time zero a pitcher throws a ball at your head40.

θ(t)

d− vt

r

Figure 2.11.1.

The position of the (centre of the) ball at time t is x(t) = d ´ vt, where d is the distance
from your head to the pitcher’s mound and v is the ball’s velocity. Your eye sees the ball
filling 41 an angle 2θ(t) with

sin
(
θ(t)

)
=

r
d ´ vt

where r is the radius of the baseball. The question is “How fast is θ growing at time t?”
That is, what is dθ

dt ?

• We don’t know (yet) how to solve this equation to find θ(t) explicitly. So we use
implicit differentiation.

• To do so we apply d
dt to both sides of our equation. This gives

cos
(
θ(t)

)
¨ θ1(t) =

rv
(d ´ vt)2

40 It seems that it is not a friendly game today.
41 This is the “visual angle” or “angular size”.
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• Then we solve for θ1(t):

θ1(t) =
rv

(d ´ vt)2 cos
(
θ(t)

)

• As is often the case, when using implicit differentiation, this answer is not very sat-
isfying because it contains θ(t), for which we still do not have an explicit formula.
However in this case we can get an explicit formula for cos

(
θ(t)

)
, without having

an explicit formula for θ(t), just by looking at the right–angled triangle in Figure
2.11.1, above.

• The hypotenuse of that triangle has length d ´ vt. By Pythagoras, the length of the
side of the triangle adjacent of the angle θ(t) is

a

(d ´ vt)2 ´ r2. So

cos
(
θ(t)

)
=

a

(d ´ vt)2 ´ r2

d ´ vt

and

θ1(t) =
rv

(d ´ vt)
a

(d ´ vt)2 ´ r2

Example 2.11.4

Okay — just one more tangent-to-the-curve example and then we’ll go on to something
different.

Example 2.11.5

Let (x0, y0) be a point on the astroid42

x2/3 + y2/3 = 1.

Find an equation for the tangent line to the astroid at (x0, y0).

• As was the case in examples above we can rewrite the equation of the astroid near
(x0, y0) in the form y = f (x), with an explicit f (x), by solving the equation x2/3 +
y2/3 = 1. But again, it is computationally cleaner, and hence less vulnerable to me-
chanical errors, to use implicit differentiation. So that’s what we’ll do.

• First up, since (x0, y0) lies on the curve, it satisfies

x2/3
0 + y2/3

0 = 1.

42 Here is where is the astroid comes from. Imagine two circles, one of radius 1/4 and one of radius 1.
Paint a red dot on the smaller circle. Then imagine the smaller circle rolling around the inside of the
larger circle. The curve traced by the red dot is our astroid. Google “astroid” (be careful about the
spelling) to find animations showing this.
The astroid was first discussed by Johann Bernoulli in 1691–92. It also appears in the work of Leibniz.
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• Now, no pretending that y = f (x), this time — just make sure we remember when
we differentiate that y changes with x.

x2/3 + y2/3 = 1 start with the curve, and differentiate
2
3

x´1/3 +
2
3

y´1/3y1 = 0

• Note the derivative of x2/3, namely 2
3 x´1/3, and the derivative of y2/3, namely 2

3 y´1/3y1,
are defined only when x ‰ 0 and y ‰ 0. We are interested in the case that x = x0
and y = y0. So we better assume that x0 ‰ 0 and y0 ‰ 0. Probably something weird
happens when x0 = 0 or y0 = 0. We’ll come back to this shortly.

• To continue on, we set x = x0, y = y0 in the equation above, and then solve for y1:

2
3

x´1/3
0 +

2
3

y´1/3
0 y1(x) = 0 ùñ y1(x0) = ´

(
y0

x0

)1/3

This is the slope of the tangent line and its equation is

y = y0 + f 1(x0)(x ´ x0) = y0 ´

(
y0

x0

)1/3

(x ´ x0)

Now let’s think a little bit about what the tangent line slope of ´ 3
?

y0/x0 tells us about
the astroid.

• First, as a preliminary observation, note that since x2/3
0 ě 0 and y2/3

0 ě 0 the equation
x2/3

0 + y2/3
0 = 1 of the astroid forces 0 ď x2/3

0 , y2/3
0 ď 1 and hence ´1 ď x0, y0 ď 1.

• For all x0, y0 ą 0 the slope ´ 3
?

y0/x0 ă 0. So at all points on the astroid that are in the
first quadrant, the tangent line has negative slope, i.e. is “leaning backwards”.

• As x0 tends to zero, y0 tends to ˘1 and the tangent line slope tends to infinity. So at
points on the astroid near (0, ˘1), the tangent line is almost vertical.

• As y0 tends to zero, x0 tends to ˘1 and the tangent line slope tends to zero. So at
points on the astroid near (˘1, 0), the tangent line is almost horizontal.

Here is a figure illustrating all this.

x2/3 + y2/3 = 1

(x0, y0)
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Sure enough, as we speculated earlier, something weird does happen to the astroid when
x0 or y0 is zero. The astroid is pointy, and does not have a tangent there.

Example 2.11.5

2.12 Ĳ Inverse Trigonometric Functions

One very useful application of implicit differentiation is to find the derivatives of inverse
functions. We have already used this approach to find the derivative of the inverse of the
exponential function — the logarithm.

We are now going to consider the problem of finding the derivatives of the inverses
of trigonometric functions. Now is a very good time to go back and reread Section 0.6 on
inverse functions — especially Definition 0.6.3. Most importantly, given a function f (x),
its inverse function f ´1(x) only exists, with domain D, when f (x) passes the “horizontal
line test”, which says that for each Y in D the horizontal line y = Y intersects the graph
y = f (x) exactly once. (That is, f (x) is a one-to-one function.)

Let us start by playing with the sine function and determine how to restrict the domain
of sin x so that its inverse function exists.

Example 2.12.1

Let y = f (x) = sin(x). We would like to find the inverse function which takes y and re-
turns to us a unique x-value so that sin(x) = y.

x

y

y = sin(x)
y = 0.3

y = −1.2

• For each real number Y, the number of x-values that obey sin(x) = Y, is exactly the
number of times the horizontal straight line y = Y intersects the graph of sin(x).

• When ´1 ď Y ď 1, the horizontal line intersects the graph infinitely many times.
This is illustrated in the figure above by the line y = 0.3.

• On the other hand, when Y ă ´1 or Y ą 1, the line y = Y never intersects the graph
of sin(x). This is illustrated in the figure above by the line y = ´1.2.

This is exactly the horizontal line test and it shows that the sine function is not one-to-one.
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Now consider the function

y = sin(x) with domain ´
π

2
ď x ď

π

2
This function has the same formula but the domain has been restricted so that, as we’ll
now show, the horizontal line test is satisfied.

x

y

π
2

−π
2

y = sin(x)
y = 0.3

y = −1.2

As we saw above when |Y| ą 1 no x obeys sin(x) = Y and, for each ´1 ď Y ď 1, the line
y = Y (illustrated in the figure above with y = 0.3) crosses the curve y = sin(x) infinitely
many times, so that there are infinitely many x’s that obey f (x) = sin x = Y. However
exactly one of those crossings (the dot in the figure) has ´π/2 ď x ď π/2.

That is, for each ´1 ď Y ď 1, there is exactly one x, call it X, that obeys both

sin X = Y and ´
π

2
ď X ď

π

2
That unique value, X, is typically denoted arcsin(Y). That is

sin(arcsin(Y)) = Y and ´
π

2
ď arcsin(Y) ď

π

2
Renaming Y Ñ x, the inverse function arcsin(x) is defined for all ´1 ď x ď 1 and is
determined by the equation

sin
(

arcsin(x)
)
= x and ´

π

2
ď arcsin(x) ď

π

2
. (2.12.1)

Note that many texts will use sin´1(x) to denote arcsine, however we will use arcsin(x)
since we feel that it is clearer43; the reader should recognise both.

Example 2.12.1

Example 2.12.2

Since
sin

π

2
= 1 sin

π

6
=

1
2

43 The main reason being that people frequently confuse sin´1(x) with (sin(x))´1 = 1
sin x . We feel that

prepending the prefix “arc” less likely to lead to such confusion. The notations asin(x) and Arcsin(x)
are also used.
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and ´π/2 ď π/6, π/2 ď π/2, we have

arcsin 1 =
π

2
arcsin

1
2
=

π

6

Even though
sin(2π) = 0

it is not true that arcsin 0 = 2π, and it is not true that arcsin
(

sin(2π)
)
= 2π, because 2π

is not between ´π/2 and π/2. More generally

arcsin
(

sin(x)
)
= the unique angle θ between ´π/2 and π/2 obeying sin θ = sin x
= x if and only if ´π/2 ď x ď π/2

So, for example, arcsin
(

sin
(

11π/16
))

cannot be 11π/16 because 11π/16 is bigger than π/2. So
how do we find the correct answer? Start by sketching the graph of sin(x).

x

y

π
2

11π
16

5π
16 y = sin(x)

y = sin(11π/16)

3π
16

3π
16

It looks like the graph of sin x is symmetric about x = π/2. The mathematical way to say
that “the graph of sin x is symmetric about x = π/2” is “sin(π/2 ´ θ) = sin(π/2 + θ)” for
all θ. That is indeed true44.

Now 11π/16 = π/2 + 3π/16 so

sin
(11π

16

)
= sin

(π

2
+

3π

16

)
= sin

(π

2
´

3π

16

)
= sin

(5π

16

)

and, since 5π/16 is indeed between ´π/2 and π/2,

arcsin
(

sin
(11π

16

))
=

5π

16

(
and not

11π

16

)
.

Example 2.12.2

44 Indeed both are equal to cos θ. You can see this by playing with the trig identities in Appendix A.8.
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§§ Derivatives of Inverse Trig Functions

Now that we have explored the arcsine function we are ready to find its derivative. Lets
call

arcsin(x) = θ(x),

so that the derivative we are seeking is dθ
dx . The above equation is (after taking sine of both

sides) equivalent to

sin(θ) = x

Now differentiate this using implicit differentiation (we just have to remember that θ
varies with x and use the chain rule carefully):

cos(θ) ¨
dθ

dx
= 1

dθ

dx
=

1
cos(θ)

substitute θ = arcsin x

d
dx

arcsin x =
1

cos(arcsin x)

This doesn’t look too bad, but it’s not really very satisfying because the right hand side is
expressed in terms of arcsin(x) and we do not have an explicit formula for arcsin(x).

However even without an explicit formula for arcsin(x), it is a simple matter to get
an explicit formula for cos

(
arcsin(x)

)
, which is all we need. Just draw a right–angled

triangle with one angle being arcsin(x). This is done in the figure below45.

θ

1 x

√
1− x2

Since sin(θ) = x (see (2.12.1)), we have made the side opposite the angle θ of length x and
the hypotenuse of length 1. Then, by Pythagoras, the side adjacent to θ has length

?
1 ´ x2

and so

cos
(

arcsin(x)
)
= cos(θ) =

a

1 ´ x2

which in turn gives us the answer we need:

d
dx

arcsin(x) =
1

?
1 ´ x2

The definitions for arccos, arctan and arccot are developed in the same way. Here are
the graphs that are used.

45 The figure is drawn for the case that 0 ď arcsin(x) ď π/2. Virtually the same argument works for the
case ´π/2 ď arcsin(x) ď 0
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x

y

π

y = cos(x)

y = 0.3

y = −1.2

x

y

π
2

−π
2

y = tan(x)

y = 0.8

x

y

π
2

π

y = cot(x)

y = 0.8

The definitions for the remaining two inverse trigonometric functions may also be devel-
oped in the same way4647. But it’s a little easier to use

csc x =
1

sin x
sec x =

1
cos x

46 In fact, there are two different widely used definitions of arcsec x. Under our definition, below,
θ = arcsec x takes values in 0 ď θ ď π. Some people, perfectly legitimately, define θ = arcsec x to take
values in the union of 0 ď θ ă π

2 and π ď θ ă 3π
2 . Our definition is sometimes called the “trigonometry

friendly” definition. The definition itself has the advantage of simplicity. The other definition is some-
times called the “calculus friendly” definition. It eliminates some absolute values and hence simplifies
some computations. Similarly, there are two different widely used definitions of arccsc x.

47 One could also define arccot(x) = arctan(1/x) with arccot(0) = π
2 . We have chosen not to do so,

because the definition we have chosen is both continuous and standard.
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arcsin x is defined for |x| ď 1. It is the unique number obeying

sin
(

arcsin(x)
)
= x and ´

π

2
ď arcsin(x) ď

π

2

arccos x is defined for |x| ď 1. It is the unique number obeying

cos
(

arccos(x)
)
= x and 0 ď arccos(x) ď π

arctan x is defined for all x P R. It is the unique number obeying

tan
(

arctan(x)
)
= x and ´

π

2
ă arctan(x) ă

π

2

arccsc x = arcsin 1
x is defined for |x| ě 1. It is the unique number obeying

csc
(

arccsc(x)
)
= x and ´

π

2
ď arccsc(x) ď

π

2

Because csc(0) is undefined, arccsc(x) never takes the value 0.

arcsec x = arccos 1
x is defined for |x| ě 1. It is the unique number obeying

sec
(

arcsec(x)
)
= x and 0 ď arcsec(x) ď π

Because sec(π/2) is undefined, arcsec(x) never takes the value π/2.

arccot x is defined for all x P R. It is the unique number obeying

cot
(

arccot(x)
)
= x and 0 ă arccot(x) ă π

Definition 2.12.3.

Example 2.12.4

To find the derivative of arccos we can follow the same steps:

• Write arccos(x) = θ(x) so that cos θ = x and the desired derivative is dθ
dx .

• Differentiate implicitly, remembering that θ is a function of x:

´ sin θ
dθ

dx
= 1

dθ

dx
= ´

1
sin θ

d
dx

arccos x = ´
1

sin(arccos x)
.

• To simplify this expression, again draw the relevant triangle
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θ

1 √
1− x2

x

from which we see

sin(arccos x) = sin θ =
a

1 ´ x2.

• Thus

d
dx

arccos x = ´
1

?
1 ´ x2

.

Example 2.12.4

Example 2.12.5

Very similar steps give the derivative of arctan x:

• Start with θ = arctan x, so tan θ = x.

• Differentiate implicitly:

sec2 θ
dθ

dx
= 1

dθ

dx
=

1
sec2 θ

= cos2 θ

d
dx

arctan x = cos2(arctan x).

• To simplify this expression, we draw the relevant triangle

θ

√
1 + x2

x

1

from which we see

cos2(arctan x) = cos2 θ =
1

1 + x2
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• Thus

d
dx

arctan x =
1

1 + x2 .

An almost identical computation gives the derivative of arccot x:

• Start with θ = arccot x, so cot θ = x.

• Differentiate implicitly:

´ csc2 θ
dθ

dx
= 1

d
dx

arccot x =
dθ

dx
= ´

1
csc2 θ

= ´ sin2 θ = ´
1

1 + x2

from the triangle

θ

√
1 + x2

1

x

Example 2.12.5

Example 2.12.6

To find the derivative of arccsc we can use its definition and the chain rule.

θ = arccsc x take cosecant of both sides

csc θ = x but csc θ =
1

sin θ
, so flip both sides

sin θ =
1
x

now take arcsine of both sides

θ = arcsin
(

1
x

)

Now just differentiate:

dθ

dx
=

d
dx

arcsin
(

1
x

)
chain rule carefully

=
1

?
1 ´ x´2

¨
´1
x2
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To simplify further we will factor x´2 out of the square root. We need to be a little careful
doing that. Take another look at examples 1.5.6 and 1.5.7 and the discussion between them
before proceeding.

=
1

a

x´2(x2 ´ 1)
¨

´1
x2

=
1

|x´1| ¨
?

x2 ´ 1
¨

´1
x2 note that x2

¨ |x´1
| = |x|.

= ´
1

|x|
?

x2 ´ 1

In the same way, we can find the derivative of the remaining inverse trig function. We just
use its definition, a derivative we already know and the chain rule.

d
dx

arcsec(x) =
d
dx

arccos
(1

x

)
= ´

1
?

1 ´ 1/x2
¨

(
´

1
x2

)
=

1
|x|

?
x2 ´ 1

Example 2.12.6

By way of summary, we have

The derivatives of the inverse trigonometric functions are

d
dx

arcsin(x) =
1

?
1 ´ x2

d
dx

arccsc(x) = ´
1

|x|
?

x2 ´ 1
d
dx

arccos(x) = ´
1

?
1 ´ x2

d
dx

arcsec(x) =
1

|x|
?

x2 ´ 1
d
dx

arctan(x) =
1

1 + x2
d
dx

arccot(x) = ´
1

1 + x2

Theorem 2.12.7.

2.13 Ĳ The Mean Value Theorem

Consider the following situation. Two towns are separated by a 120km long stretch of
road. The police in town A observe a car leaving at 1pm. Their colleagues in town B
see the car arriving at 2pm. After a quick phone call between the two police stations,
the driver is issued a fine for going 120km/h at some time between 1pm and 2pm. It
is intuitively obvious48 that, because his average velocity was 120km/h, the driver must
have been going at least 120km/h at some point. From a knowledge of the average velocity
of the car, we are able to deduce something about an instantaneous velocity49.

48 Unfortunately there are many obvious things that are decidedly false — for example “There are more
rational numbers than integers.” or “Viking helmets had horns on them”.

49 Recall that speed and velocity are not the same.
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Let us turn this around a little bit. Consider the premise of a 90s action film50 — a bus
must travel at a velocity of no less than 80km/h. Being a bus, it is unable to go faster than,
say, 120km/h. The film runs for about 2 hours, and let’s assume that there is about thirty
minutes of non-action — so the bus’ velocity is constrained between 80 and 120km/h for
a total of 1.5 hours.

It is again obvious that the bus must have travelled between 80 ˆ 1.5 = 120 and 120 ˆ

1.5 = 180km during the film. This time, from a knowledge of the instantaneous rate of
change of position — the derivative — throughout a 90 minute time interval, we are able
to say something about the net change of position during the 90 minutes.

In both of these scenarios we are making use of a piece of mathematics called the
Mean Value Theorem. It says that, under appropriate hypotheses, the average rate of
change f (b)´ f (a)

b´a of a function over an interval is achieved exactly by the instantaneous
rate of change f 1(c) of the function at some51 (unknown) point a ď c ď b. We shall get to
a precise statement in Theorem 2.13.4. We start working up to it by first considering the
special case in which f (a) = f (b).

§§ Rolle’s Theorem

Let a and b be real numbers with a ă b. And let f be a function so that

• f (x) is continuous on the closed interval a ď x ď b,

• f (x) is differentiable on the open interval a ă x ă b, and

• f (a) = f (b)

then there is a c strictly between a and b, i.e. obeying a ă c ă b, such that

f 1(c) = 0.

Theorem 2.13.1 (Rolle’s theorem).

Again, like the two scenarios above, this theorem says something intuitively obvious.
Consider — if you throw a ball straight up into the air and then catch it, at some time in
between the throw and the catch it must be stationary. Translating this into mathematical
statements, let s(t) be the height of the ball above the ground in metres, and let t be time

• Velocity specifies the direction of motion as well as the rate of change. Objects moving along a straight
line have velocities that are positive or negative numbers indicating which direction the object is
moving along the line.

• Speed, on the other hand, is the distance travelled per unit time and is always a non-negative number
— it is the absolute value of velocity.

50 The sequel won a Raspberry award for “Worst remake or sequel”.
51 There must be at least one such point — there could be more than one — but there cannot be zero.
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from the moment the ball is thrown in seconds. Then we have

s(0) = 1 we release the ball at about hip-height
s(4) = 1 we catch the ball 4s later at hip-height

Then we know there is some time in between — say at t = c — when the ball is stationary
(in this case when the ball is at the top of its trajectory). I.e.

v(c) = s1(c) = 0.

Rolle’s theorem guarantees that for any differentiable function that starts and ends at the
same value, there will always be at least one point between the start and finish where the
derivative is zero.

Figure 2.13.1.

There can, of course, also be multiple points at which the derivative is zero — but there
must always be at least one. Notice, however, the theorem52 does not tell us the value of
c, just that such a c must exist.

Example 2.13.2

We can use Rolle’s theorem to show that the function

f (x) = sin(x) ´ cos(x)

has a point c between 0 and 3π
2 so that f 1(c) = 0.

To apply Rolle’s theorem we first have to show the function satisfies the conditions of
the theorem on the interval [0, 3π

2 ].

• Since f is the sum of sine and cosine it is continuous on the interval and also differ-
entiable on the interval.

• Further, since

f (0) = sin 0 ´ cos 0 = 0 ´ 1 = ´1

f
(

3π

2

)
= sin

3π

2
´ cos

3π

2
= ´1 ´ 0 = ´1

we can now apply Rolle’s theorem.

52 Notice this is very similar to the intermediate value theorem (see Theorem 1.6.12)
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• Rolle’s theorem implies that there must be a point c P (0, 3π/2) so that f 1(c) = 0.

While Rolle’s theorem doesn’t tell us the value of c, this example is sufficiently simple that
we can find it directly.

f 1(x) = cos x + sin x
f 1(c) = cos c + sin c = 0 rearrange
sin c = ´ cos c and divide by cos c
tan c = ´1

Hence c = 3π
4 . We have sketched the function and the relevant points below.

Example 2.13.2

A more substantial application of Rolle’s theorem (in conjunction with the intermediate
value theorem — Theorem 1.6.12) is to show that a function does not have multiple zeros
in an interval:

Example 2.13.3

Show that the equation 2x ´ 1 = sin(x) has exactly 1 solution.

• Start with a rough sketch of each side of the equation

This seems like it should be true.

• Notice that the problem we are trying to solve is equivalent to showing that the
function

f (x) = 2x ´ 1 ´ sin(x)

has only a single zero.

194



DERIVATIVES 2.13 THE MEAN VALUE THEOREM

• Since f (x) is the sum of a polynomial and a sine function, it is continuous and dif-
ferentiable everywhere. Thus we can apply both the IVT and Rolle’s theorem.

• Notice that f (0) = ´1 and f (2) = 4 ´ 1 ´ sin(2) = 3 ´ sin(2) ě 2, since ´1 ď

sin(2) ď 1. Thus by the IVT we know there is at least one number c between 0 and 2
so that f (c) = 0.

• But our job is only half done — this shows that there is at least one zero, but it does
not tell us there is no more than one. We have more work to do, and Rolle’s theorem
is the tool we need.

• Consider what would happen if f (x) is zero in 2 places — that is, there are numbers
a, b so that f (a) = f (b) = 0.

– Since f (x) is differentiable everywhere and f (a) = f (b) = 0, we can apply
Rolle’s theorem.

– Hence we know there is a point c between a and b so that f 1(c) = 0.

– But let us examine f 1(x):

f 1(x) = 2 ´ cos x

Since ´1 ď cos x ď 1, we must have that f 1(x) ě 1.

– But this contradicts Rolle’s theorem which tells us there must be a point at
which the derivative is zero.

Thus the function cannot be zero at two different places — otherwise we’d have a
contradiction.

We can actually nail down the value of c using the bisection approach we used in exam-
ple 1.6.15. If we do this carefully we find that c « 0.887862 . . .

Example 2.13.3

§§ Back to the MVT

Rolle’s theorem can be generalised in a straight-forward way; given a differentiable func-
tion f (x) we can still say something about d f

dx , even if f (a) ‰ f (b). Consider the following
sketch:
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Figure 2.13.2.

All we have done is tilt the picture so that f (a) ă f (b). Now we can no longer guaran-
tee that there will be a point on the graph where the tangent line is horizontal, but there
will be a point where the tangent line is parallel to the secant joining (a, f (a)) to (b, f (b)).

To state this in terms of our first scenario back at the beginning of this section, suppose
that you are driving along the x–axis. At time t = a you are at x = f (a) and at time t = b
you are at x = f (b). For simplicity, let’s suppose that b ą a and f (b) ě f (a), just like in
the above sketch. Then during the time interval in question you travelled a net distance of
f (b)´ f (a). It took you b ´ a units of time to travel that distance, so your average velocity
was f (b)´ f (a)

b´a . You may very well have been going faster than f (b)´ f (a)
b´a part of the time

and slower than f (b)´ f (a)
b´a part of the time. But it is reasonable to guess that at some time

between t = a and t = b your instantaneous velocity was exactly f (b)´ f (a)
b´a . The mean

value theorem says that, under reasonable assumptions about f , this is indeed the case.

Let a and b be real numbers with a ă b. And let f (x) be a function so that

• f (x) is continuous on the closed interval a ď x ď b, and

• f (x) is differentiable on the open interval a ă x ă b

then there is a c P (a, b), such that

f 1(c) =
f (b) ´ f (a)

b ´ a

which we can also express as

f (b) = f (a) + f 1(c)(b ´ a).

Theorem 2.13.4 (The mean value theorem).

Let us start to explore the mean value theorem — which is very frequently known as
the MVT. A simple example to start:

Example 2.13.5
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Consider the polynomial f (x) = 3x2 ´ 4x + 2 on [´1, 1].

• Since f is a polynomial it is continuous on the interval and also differentiable on the
interval. Hence we can apply the MVT.

• The MVT tells us that there is a point c P (´1, 1) so that

f 1(c) =
f (1) ´ f (´1)

1 ´ (´1)
=

1 ´ 9
2

= ´4

This example is sufficiently simple that we can find the point c and the corresponding
tangent line:

• The derivative is

f 1(x) = 6x ´ 4

• So we need to solve f 1(c) = ´4:

6c ´ 4 = ´4

which tells us that c = 0.

• The tangent line has slope ´4 and passes through (0, f (0)) = (0, 2), and so is given
by

y = ´4x + 2

• The secant line joining (´1, f (´1)) = (´1, 9) to (1, f (1)) = (1, 1) is just

y = 5 ´ 4x

• Here is a sketch of the curve and the two lines:

´1 ´0.5 0.5 1

3

6

9 3x2 ´ 4x + 2
5 ´ 4x
2 ´ 4x

Example 2.13.5

Example 2.13.6

We can return to our initial car-motivated examples. Say you are driving along a straight
road in a car that can go at most 80km/h. How far can you go in 2 hours? — the answer is
easy, but we can also solve this using MVT.
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• Let s(t) be the position of the car in km at time t measured in hours.

• Then s(0) = 0 and s(2) = q, where q is the quantity that we need to bound.

• We are told that |s1(t)| ď 80, or equivalently

´80 ď s1(t) ď 80

• By the MVT there is some c between 0 and 2 so that

s1(c) =
q ´ 0

2
=

q
2

• Now since ´80 ď s1(c) ď 80 we must have ´80 ď q/2 ď 80 and hence ´160 ď q =
s(2) ď 160.

Example 2.13.6

More generally if we have some information about the derivative, then we can use the
MVT to leverage this information to tell us something about the function.

Example 2.13.7

Let f (x) be a differentiable function so that

f (1) = 10 and ´1 ď f 1(x) ď 2 everywhere

Obtain upper and lower bounds on f (5).
Okay — what do we do?

• Since f (x) is differentiable we can use the MVT.

• Say f (5) = q, then the MVT tells us that there is some c between 1 and 5 such that

f 1(c) =
q ´ 10
5 ´ 1

=
q ´ 10

4

• But we know that ´1 ď f 1(c) ď 2, so

´1 ď f 1(c) ď 2

´1 ď
q ´ 10

4
ď 2

´4 ď q ´ 10 ď 8
6 ď q ď 18

• Thus we must have 6 ď f (5) ď 18.

Example 2.13.7
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§§§ (Optional) — Why is the MVT True?

We won’t give a real proof for this theorem, but we’ll look at a picture which shows why
it is true. Here is the picture. It contains a sketch of the graph of f (x), with x running from
a to b, as well as a line segment which is the secant of the graph from the point

(
a , f (a)

)

to the point
(
b , f (b)

)
. The slope of the secant is exactly f (b)´ f (a)

b´a . Remember that we are

(a,f(a))

(b,f(b))
(c,f(c))

looking for a point,
(
c , f (c)

)
, on the graph of f (x) with the property that f 1(c) = f (b)´ f (a)

b´a ,
i.e. with the property that the slope of the tangent line at

(
c , f (c)

)
is the same as the slope

of the secant. So imagine that you start moving the secant upward, carefully keeping
the moved line segment parallel to the secant. So the slope of the moved line segment is
always exactly f (b)´ f (a)

b´a . When we first start moving the line segment it is not tangent to
the curve — it crosses the curve. This is illustrated in the figure by the second line segment
from the bottom. If we move the line segment too far it does not touch the curve at all.
This is illustrated in the figure by the top segment. But if we stop moving the line segment
just before it stops intersecting the curve at all, we get exactly the tangent line to the curve
at the point on the curve that is farthest from the secant. This tangent line has exactly the
desired slope. This is illustrated in the figure by the third line segment from the bottom.

§§ Be Careful with Hypotheses

The mean value theorem has hypotheses — f (x) has to be continuous for a ď x ď b and
has to be differentiable for a ă x ă b. If either hypothesis is violated, the conclusion of the
mean value theorem can fail. That is, the curve y = f (x) need not have a tangent line at
some x = c between a and b whose slope, f 1(c), is the same as the slope, f (b)´ f (a)

b´a , of the
secant joining the points

(
a , f (a)

)
and

(
b , f (b)

)
on the curve. If f 1(x) fails to exist for even

a single value of x between a and b, all bets are off. The following two examples illustrate
this.

Example 2.13.8

For the first “bad” example, a = 0, b = 2 and

f (x) =

#

0 if x ď 1
1 if x ą 1

(a, f(a))

(b, f(b))
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For this example, f 1(x) = 0 at every x where it is defined. That is, at every x ‰ 1. But the

slope of the secant joining
(
a , f (a)

)
= (0, 0) and

(
b , f (b)

)
= (2, 1) is 1

2 .

Example 2.13.8

Example 2.13.9

For the second “bad” example, a = ´1, b = 1 and f (x) = |x|. For this function

f 1(x) =

$

’

&

’

%

´1 if x ă 0
undefined if x = 0
1 if x ą 0

(a, f(a)) (b, f(b))

For this example, f 1(x) = ˘1 at every x where it is defined. That is, at every x ‰ 0. But

the slope of the secant joining
(
a , f (a)

)
= (´1, 1) and

(
b , f (b)

)
= (1, 1) is 0.

Example 2.13.9

Example 2.13.10

Here is one “good” example, where the hypotheses of the mean value theorem are satis-
fied. Let f (x) = x2. Then f 1(x) = 2x. For any a ă b,

f (b) ´ f (a)
b ´ a

=
b2 ´ a2

b ´ a
= b + a

So f 1(c) = 2c is exactly f (b)´ f (a)
b´a when c = a+b

2 , which, in this example, happens to be
exactly half way between x = a and x = b.

(a, f(a))

(b, f(b))

(c, f(c))

Example 2.13.10

Recall from Section 2.3 that if f 1(c) ą 0, then f (x) is increasing at x = c. A simple
consequence of the mean value theorem is that if you know the sign of f 1(c) for all c’s
between a and b, with b ą a, then f (b) ´ f (a) = f 1(c)(b ´ a) must have the same sign.
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Let A and B be real numbers with A ă B. Let the function f (x) be defined and
continuous on the closed interval A ď x ď B and be differentiable on the open
interval A ă x ă B.

(a) If f 1(c) = 0 for all A ă c ă B, then f (b) = f (a) for all A ď a ă b ď B.
— That is, f (x) is constant on A ď x ď B.

(b) If f 1(c) ě 0 for all A ă c ă B, then f (b) ě f (a) for all A ď a ď b ď B.
— That is, f (x) is increasing on A ď x ď B.

(c) If f 1(c) ą 0 for all A ă c ă B, then f (b) ą f (a) for all A ď a ă b ď B.
— That is, f (x) is strictly increasing on A ď x ď B.

(d) If f 1(c) ď 0 for all A ă c ă B, then f (b) ď f (a) for all A ď a ď b ď B.
— That is, f (x) is decreasing on A ď x ď B.

(e) If f 1(c) ă 0 for all A ă c ă B, then f (b) ă f (a) for all A ď a ă b ď B.
— That is, f (x) is strictly decreasing on A ď x ď B.

Corollary 2.13.11 (Consequences of the mean value theorem).

It is not hard to see why the above is true:

• Say f 1(x) = 0 at every point in the interval [A, B]. Now pick any a, b P [A, B] with
a ă b. Then the MVT tells us that there is c P (a, b) so that

f 1(c) =
f (b) ´ f (a)

b ´ a

If f (b) ‰ f (a) then we must have that f 1(c) ‰ 0 — contradicting what we are told
about f 1(x). Thus we must have that f (b) = f (a).

• Similarly, say f 1(x) ě 0 at every point in the interval [A, B]. Now pick any a, b P

[A, B] with a ă b. Then the MVT tells us that there is c P (a, b) so that

f 1(c) =
f (b) ´ f (a)

b ´ a

Since b ą a, the denominator is positive. Now if f (b) ă f (a) the numerator would
be negative, making the right-hand side negative, and contradicting what we are
told about f 1(x). Hence we must have f (b) ě f (a).

• The other parts are similar.

A nice corollary of the above corollary is the following:

If f 1(x) = g1(x) for all x in the open interval (a, b), then f ´ g is a constant on
(a, b). That is f (x) = g(x) + c, where c is some constant.

Corollary 2.13.12.
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We can prove this by setting h(x) = f (x) ´ g(x). Then h1(x) = 0 and so the previous
corollary tells us that h(x) is constant.

Example 2.13.13

Using this corollary we can prove results like the following:

arcsin x + arccos x =
π

2
for all ´ 1 ă x ă 1

How does this work? Let f (x) = arcsin x + arccos x. Then

f 1(x) =
1

?
1 ´ x2

+
´1

?
1 ´ x2

= 0

Thus f must be a constant. To find out which constant, we can just check its value at a
convenient point, like x = 0.

arcsin(0) + arccos(0) = π/2 + 0 = π/2

Since the function is constant, this must be the value.
Example 2.13.13

2.14 Ĳ Higher Order Derivatives

The operation of differentiation takes as input one function, f (x), and produces as out-
put another function, f 1(x). Now f 1(x) is once again a function. So we can differentiate
it again, assuming that it is differentiable, to create a third function, called the second
derivative of f . And we can differentiate the second derivative again to create a fourth
function, called the third derivative of f . And so on.

• f 2(x) and f (2)(x) and d2 f
dx2 (x) all mean d

dx
( d

dx f (x)
)

• f 3(x) and f (3)(x) and d3 f
dx3 (x) all mean d

dx
( d

dx
( d

dx f (x)
))

• f (4)(x) and d4 f
dx4 (x) both mean d

dx
( d

dx
( d

dx
( d

dx f (x)
)))

• and so on.

Notation 2.14.1.

Here is a simple example. Then we’ll think a little about the significance of second
order derivatives. Then we’ll do a more a computationally complex example.
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Example 2.14.2

Let n be a natural number and let f (x) = xn. Then

d
dx

xn = nxn´1

d2

dx2 xn =
d
dx
(
nxn´1) = n(n ´ 1)xn´2

d3

dx3 xn =
d
dx
(
n(n ´ 1)xn´2) = n(n ´ 1)(n ´ 2)xn´3

Each time we differentiate, we bring down the exponent, which is exactly one smaller
than the previous exponent brought down, and we reduce the exponent by one. By the
time we have differentiated n ´ 1 times, the exponent has decreased to n ´ (n ´ 1) = 1
and we have brought down the factors n(n ´ 1)(n ´ 2) ¨ ¨ ¨ 2. So

dn´1

dxn´1 xn = n(n ´ 1)(n ´ 2) ¨ ¨ ¨ 2x

and

dn

dxn xn = n(n ´ 1)(n ´ 2) ¨ ¨ ¨ 1

The product of the first n natural numbers, 1 ¨ 2 ¨ 3 ¨ ¨ ¨ ¨ ¨ n, is called “n factorial” and is
denoted n!. So we can also write

dn

dxn xn = n!

If m ą n, then

dm

dxm xn = 0

Example 2.14.2

Example 2.14.3

Recall that the derivative v1(a) is the (instantaneous) rate of change of the function v(t) at
t = a. Suppose that you are walking on the x–axis and that x(t) is your x–coordinate
at time t. Also suppose, for simplicity, that you are moving from left to right. Then
v(t) = x1(t) is your velocity at time t and v1(a) = x2(a) is the rate at which your ve-
locity is changing at time t = a. It is called your acceleration. In particular, if x2(a) ą 0,
then your velocity is increasing, i.e. you are speeding up, at time a. If x2(a) ă 0, then your
velocity is decreasing, i.e. you are slowing down, at time a. That’s one interpretation of
the second derivative.

Example 2.14.3
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Example 2.14.4 (Example 2.11.1, continued)

Find y2 if y = y3 + xy + x3.

Solution. This problem concerns some function y(x) that is not given to us explicitly. All
that we are told is that y(x) satisfies

y(x) = y(x)3 + xy(x) + x3 (E1)

for all x. We are asked to find y2(x). We cannot solve this equation to get an explicit
formula for y(x). So we use implicit differentiation, as we did in Example 2.11.1. That is,
we apply d

dx to both sides of (E1). This gives

y1(x) = 3y(x)2 y1(x) + y(x) + x y1(x) + 3x2 (E2)

which we can solve for y1(x), by moving all y1(x)’s to the left hand side, giving
[
1 ´ x ´ 3y(x)2]y1(x) = y(x) + 3x2

and then dividing across.

y1(x) =
y(x) + 3x2

1 ´ x ´ 3y(x)2 (E3)

To get y2(x), we have two options.
Method 1. Apply d

dx to both sides of (E2). This gives

y2(x) = 3y(x)2 y2(x) + 6y(x) y1(x)2 + 2y1(x) + x y2(x) + 6x

We can now solve for y2(x), giving

y2(x) =
6x + 2y1(x) + 6y(x)y1(x)2

1 ´ x ´ 3y(x)2 (E4)

Then we can substitute in (E3), giving

y2(x) = 2
3x + y(x)+3x2

1´x´3y(x)2 + 3y(x)
( y(x)+3x2

1´x´3y(x)2

)2

1 ´ x ´ 3y(x)2

= 2
3x[1 ´ x ´ 3y(x)2]

2
+ [y(x) + 3x2][1 ´ x ´ 3y(x)2] + 3y(x)[y(x) + 3x2]

2

[1 ´ x ´ 3y(x)2]3

Method 2. Alternatively, we can also differentiate (E3).

y2(x) =
[y1(x) + 6x][1 ´ x ´ 3y(x)2] ´ [y(x) + 3x2][´1 ´ 6y(x)y1(x)]

[1 ´ x ´ 3y(x)2]2

=
[ y(x)+3x2

1´x´3y(x)2 + 6x][1 ´ x ´ 3y(x)2] ´ [y(x) + 3x2][´1 ´ 6y(x) y(x)+3x2

1´x´3y(x)2 ]

[1 ´ x ´ 3y(x)2]2

=
2[y(x) + 3x2][1 ´ x ´ 3y(x)2] + 6x[1 ´ x ´ 3y(x)2]

2
+ 6y(x)[y(x) + 3x2]

2

[1 ´ x ´ 3y(x)2]3
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Remark 1. We have now computed y2(x) — sort of. The answer is in terms of y(x), which
we don’t know. Since we cannot get an explicit formula for y(x), there’s not a great deal
that we can do, in general.
Remark 2. Even though we cannot solve y = y3 + xy + x3 explicitly for y(x), for general
x, it is sometimes possible to solve equations like this for some special values of x. In
fact, we saw in Example 2.11.1 that when x = 1, the given equation reduces to y(1) =
y(1)3 + 1 ¨ y(1) + 13, or y(1)3 = ´1, which we can solve to get y(1) = ´1. Substituting
into (E2), as we did in Example 2.11.1 gives

y1(1) =
´1 + 3

1 ´ 1 ´ 3(´1)2 = ´
2
3

and substituting into (E4) gives

y2(1) =
6 + 2

(
´ 2

3

)
+ 6(´1)

(
´ 2

3

)2

1 ´ 1 ´ 3(´1)2 =
6 ´ 4

3 ´ 8
3

´3
= ´

2
3

(It’s a fluke that, in this example, y1(1) and y2(1) happen to be equal.) So we now know
that, even though we can’t solve y = y3 + xy + x3 explicitly for y(x), the graph of the so-
lution passes through (1, ´1) and has slope ´2

3 (i.e. is sloping downwards by between 30˝

and 45˝) there and, furthermore, the slope of the graph decreases as x increases through
x = 1.

x
y

1

−1

Here is a sketch of the part of the graph very near (1, ´1). The tangent line to the graph at
(1, ´1) is also shown. Note that the tangent line is sloping down to the right, as we expect,
and that the graph lies below the tangent line near (1, ´1). That’s because the slope f 1(x)
is decreasing (becoming more negative) as x passes through 1.

Example 2.14.4

Many people will suppress the (x) in y(x) when doing computations like those

in Example 2.14.4. This gives shorter, easier to read formulae, like y1 = y+3x2

1´x´3y2 .
If you do this, you must never forget that y is a function of x and is not a constant.
If you do forget, you’ll make the very serious error of saying that dy

dx = 0, which
is false.

Warning 2.14.5.
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2.15 Ĳ (Optional) — Is lim
xÑc

f 1(x) Equal to f 1(c)?

Consider the function

f (x) =

#

sin x2

x if x ‰ 0
0 if x = 0

For any x ‰ 0 we can easily use our differentiation rules to find

f 1(x) =
2x2 cos x2 ´ sin x2

x2

But for x = 0 none of our usual differentation rules apply. So how do we find f 1(0)? One
obviously legitimate strategy is to directly apply the Definition 2.2.1 of the derivative. As
an alternative, we will now consider the question “Can one find f 1(0) by taking the limit
of f 1(x) as x tends to zero?”. There is bad news and there is good news.

• The bad news is that, even for functions f (x) that are differentiable for all x, f 1(x)
need not be continuous. That is, it is not always true that limxÑ0 f 1(x) = f 1(0). We
will see a function for which limxÑ0 f 1(x) ‰ f 1(0) in Example 2.15.1, below.

• The good news is that Theorem 2.15.2, below provides conditions which are suffi-
cient to guarantee that f (x) is differentiable at x = 0 and that limxÑ0 f 1(x) = f 1(0).

Example 2.15.1

Consider the function

f (x) =

#

x2 sin 1
x if x ‰ 0

0 if x = 0

For x ‰ 0 we have, by the product and chain rules,

f 1(x) = 2x sin
1
x
+ x2

(
cos

1
x

)(
´

1
x2

)

= 2x sin
1
x

´ cos
1
x

As
ˇ

ˇ

ˇ
sin 1

x

ˇ

ˇ

ˇ
ď 1, we have

lim
xÑ0

2x sin
1
x
= 0

On the other hand, as x tends to zero, 1
x goes to ˘8. So

lim
xÑ0

cos
1
x
= DNE ùñ lim

xÑ0
f 1(x) = DNE
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We will now see that, despite this, f 1(0) is perfectly well defined. By definition

f 1(0) = lim
hÑ0

f (h) ´ f (0)
h

= lim
hÑ0

h2 sin 1
h ´ 0

h

= lim
hÑ0

h sin
1
h

= 0 since
ˇ

ˇ

ˇ

ˇ

sin
1
h

ˇ

ˇ

ˇ

ˇ

ď 1

So f 1(0) exists, but is not equal to limxÑ0 f 1(x), which does not exist.
Example 2.15.1

Now for the good news.

Let a ă c ă b. Assume that

• the function f (x) is continous on the interval a ă x ă b and

• is differentiable at every x in the intervals a ă x ă c and c ă x ă b and

• the limit limxÑc f 1(x) exists.

Then f is differentiable at x = c and

f 1(c) = lim
xÑc

f 1(x)

Theorem 2.15.2.

Proof. By hypothesis, there is a number L such that

lim
xÑc

f 1(x) = L

By definition

f 1(c) = lim
hÑ0

f (c + h) ´ f (c)
h

By the Mean Value Theorem (Theorem 2.13.4) there is, for each h, an (unknown) number
xh between c and c + h such that f 1(xh) =

f (c+h)´ f (c)
h . So

f 1(c) = lim
hÑ0

f 1(xh)

As h tends to zero, c + h tends to c, and so xh is forced to tend to c, and f 1(xh) is forced to
tend to L so that

f 1(c) = lim
hÑ0

f 1(xh) = L
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f 1(x) EQUAL TO f 1(c)?

In the next example we evaluate f 1(0) by applying Theorem 2.15.2.

Example 2.15.3

Let

f (x) =

#

sin x2

x if x ‰ 0
0 if x = 0

We have already observed above that, for x ‰ 0,

f 1(x) =
2x2 cos x2 ´ sin x2

x2 = 2 cos x2
´

sin x2

x2

We use Theorem 2.15.2 with c = 0 to show that f (x) is differentiable at x = 0 and to
evaluate f 1(0). That theorem has two hypotheses that we have not yet verified, namely
the continuity of f (x) at x = 0, and the existence of the limit limxÑ0 f 1(x). We verify them
now.

• We already know, by Lemma 2.8.1, that limhÑ0
sin h

h = 1. So

lim
xÑ0

sin x2

x2 = lim
hÑ0+

sin h
h

with h = x2

= 1

and

lim
xÑ0

f (x) = lim
xÑ0

sin x2

x
= lim

xÑ0
x

sin x2

x2 = lim
xÑ0

x lim
xÑ0

sin x2

x2 = 0 ˆ 1 = 0

and f (x) is continuous at x = 0.

• The limit of the derivative is

lim
xÑ0

f 1(x) = lim
xÑ0

[
2 cos x2

´
sin x2

x2

]
= 2 ˆ 1 ´ 1 = 1

So, by Theorem 2.15.2, f (x) is differentiable at x = 0 and f 1(0) = 1.
Example 2.15.3
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Chapter 3

In Section 2.2 we defined the derivative at x = a, f 1(a), of an abstract function f (x), to be
its instantaneous rate of change at x = a:

f 1(a) = lim
xÑa

f (x) ´ f (a)
x ´ a

This abstract definition, and the whole theory that we have developed to deal with it,
turns out be extremely useful simply because “instantaneous rate of change” appears in a
huge number of settings. Here are a few examples.

• If you are moving along a line and x(t) is your position on the line at time t, then
your rate of change of position, x1(t), is your velocity. If, instead, v(t) is your velocity
at time t, then your rate of change of velocity, v1(t), is your acceleration. We shall
explore this further in Section 3.1.

• If P(t) is the size of some population (say the number of humans on the earth) at
time t, then P1(t) is the rate at which the size of that population is changing. It is
called the net birth rate. We shall explore it further in Section 3.3.3.

• Radiocarbon dating, a procedure used to determine the age of, for example, archae-
ological materials, is based on an understanding of the rate at which an unstable
isotope of carbon decays. We shall look at this procedure in Section 3.3.1

• A capacitor is an electrical component that is used to repeatedly store and release
electrical charge (say electrons) in an electronic circuit. If Q(t) is the charge on a ca-
pacitor at time t, then Q1(t) is the instantaneous rate at which charge is flowing into
the capacitor. That’s called the current. The standard unit of charge is the coulomb.
One coulomb is the magnitude of the charge of approximately 6.241 ˆ 1018 electrons.
The standard unit for current is the amp. One amp represents one coulomb per sec-
ond.
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3.1 Ĳ Velocity and Acceleration

If you are moving along the x–axis and your position at time t is x(t), then your velocity
at time t is v(t) = x1(t) and your acceleration at time t is a(t) = v1(t) = x2(t). Your speed,
i.e. the distance that you are travelling per unit time, is |v(t)| = |x1(t)|.

Example 3.1.1

Suppose that you are moving along the x–axis and that at time t your position is given by

x(t) = t3
´ 3t + 2.

We’re going to try and get a good picture of what your motion is like. We can learn quite
a bit just by looking at the sign of the velocity v(t) = x1(t) at each time t.

• If x1(t) ą 0, then at that instant x is increasing, i.e. you are moving to the right.

• If x1(t) = 0, then at that instant you are not moving at all.

• If x1(t) ă 0, then at that instant x is decreasing, i.e. you are moving to the left.

From the given formula for x(t) it is straight forward to work out the velocity

v(t) = x1(t) = 3t2
´ 3 = 3(t2

´ 1) = 3(t + 1)(t ´ 1)

This is zero only when t = ´1 and when t = +1; at no other value1 of t can this polyno-
mial be equal zero. Consequently in any time interval that does not include either t = ´1
or t = +1, v(t) takes only a single sign2. So

• For all t ă ´1, both (t + 1) and (t ´ 1) are negative (sub in, for example, t = ´10) so
the product v(t) = x1(t) = 3(t + 1)(t ´ 1) ą 0.

• For all ´1 ă t ă 1, the factor (t + 1) ą 0 and the factor (t ´ 1) ă 0 (sub in, for
example, t = 0) so the product v(t) = x1(t) = 3(t + 1)(t ´ 1) ă 0.

• For all t ą 1, both (t + 1) and (t ´ 1) are positive (sub in, for example, t = +10) so
the product v(t) = x1(t) = 3(t + 1)(t ´ 1) ą 0.

The figure below gives a summary of the sign information we have about t ´ 1, t + 1 and
x1(t).

1 This is because the equation ab = 0 is only satisfied for real numbers a and b when either a = 0 or b = 0
or both a = b = 0. Hence if a polynomial is the product of two (or more) factors, then it is only zero
when at least one of those factors is zero. There are more complicated mathematical environments in
which you have what are called “zero divisors” but they are beyond the scope of this course.

2 This is because if v(ta) ă 0 and v(tb) ą 0 then, by the intermediate value theorem, the continuous
function v(t) = x1(t) must take the value 0 for some t between ta and tb.
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−1 0 1 t

t− 1 < 0 t− 1 > 0

t+ 1 < 0 t+ 1 > 0

x′(t) < 0x′(t) > 0 x′(t) > 0

It is now easy to put together a mental image of your trajectory.

• For t large and negative (i.e. far in the past), x(t) is large and negative and v(t) is
large and positive. For example3, when t = ´106, x(t) « t3 = ´1018 and v(t) «

3t2 = 3 ¨ 1012. So you are moving quickly to the right.

• For t ă ´1, v(t) = x1(t) ą 0 so that x(t) is increasing and you are moving to the
right.

• At t = ´1, v(´1) = 0 and you have come to a halt at position x(´1) = (´1)3 ´

3(´1) + 2 = 4.

• For ´1 ă t ă 1, v(t) = x1(t) ă 0 so that x(t) is decreasing and you are moving to the
left.

• At t = +1, v(1) = 0 and you have again come to a halt, but now at position x(1) =
13 ´ 3 + 2 = 0.

• For t ą 1, v(t) = x1(t) ą 0 so that x(t) is increasing and you are again moving to the
right.

• For t large and positive (i.e. in the far future), x(t) is large and positive and v(t) is
large and positive. For example4, when t = 106, x(t) « t3 = 1018 and v(t) « 3t2 =
3 ¨ 1012. So you are moving quickly to the right.

Here is a sketch of the graphs of x(t) and v(t). The heavy lines in the graphs indicate
when you are moving to the right — that is where v(t) = x1(t) is positive.

3 Notice here we are using the fact that when t is very large t3 is much bigger than t2 and t1. So we can
approximate the value of the polynomial x(t) by the largest term — in this case t3. We can do similarly
with v(t) — the largest term is 3t2.

4 We are making a similar rough approximation here.

211



APPLICATIONS OF DERIVATIVES 3.1 VELOCITY AND ACCELERATION

t

x

1−1

4

v

t1−1−3

And here is a schematic picture of the whole trajectory.

x
40

t = −1, x = 4
t = 1, x = 0

Example 3.1.1

Example 3.1.2

In this example we are going to figure out how far a body falling from rest will fall in a
given time period.

• We should start by defining some variables and their units. Denote

– time in seconds by t,

– mass in kilograms by m,

– distance fallen (in metres) at time t by s(t), velocity (in m/sec) by v(t) = s1(t)
and acceleration (in m/sec2) by a(t) = v1(t) = s2(t).

It makes sense to choose a coordinate system so that the body starts to fall at t = 0.

• We will use Newton’s second law of motion

the force applied to the body at time t = m ¨ a(t).

together with the assumption that the only force acting on the body is gravity (in
particular, no air resistance). Note that near the surface of the Earth,

the force due to gravity acting on a body of mass m = m ¨ g.

The constant g, called the acceleration of gravity5, is about 9.8m/sec2.

5 It is also called the standard acceleration due to gravity or standard gravity. For those of you who
prefer imperial units (or US customary units), it is about 32 ft/sec2, 77165 cubits/minute2, or 631353
furlongs/hour2.
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• Since the body is falling from rest, we know that its initial velocity is zero. That is

v(0) = 0.

Newton’s second law then implies that

m ¨ a(t) = force due to gravity
m ¨ v1(t) = m ¨ g cancel the m

v1(t) = g

• In order to find the velocity, we need to find a function of t whose derivative is
constant. We are simply going to guess such a function and then we will verify
that our guess has all of the desired properties. It’s easy to guess a function whose
derivative is the constant g. Certainly gt has the correct derivative. So does

v(t) = gt + c

for any constant c. One can then verify6 that v1(t) = g. Using the fact that v(0) = 0
we must then have c = 0 and so

v(t) = gt.

• Since velocity is the derivative of position, we know that

s1(t) = v(t) = g ¨ t.

To find s(t) we are again going to guess and check. It’s not hard to see that we can
use

s(t) =
g
2

t2 + c

where again c is some constant. Again we can verify that this works simply by
differentiating7. Since we have defined s(t) to be the distance fallen, it follows that
s(0) = 0 which in turn tells us that c = 0. Hence

s(t) =
g
2

t2 but g = 9.8, so

= 4.9t2,

which is exactly the s(t) used way back in Section 1.2.

6 While it is clear that this satisfies the equation we want, it is less clear that it is the only function that
works. To see this, assume that there are two functions f (t) and h(t) which both satisfy v1(t) = g. Then
f 1(t) = h1(t) = g and so f 1(t) ´ h1(t) = 0. Equivalently

d
dt

( f (t) ´ h(t)) = 0.

The only function whose derivative is zero everywhere is the constant function (see Section 2.13 and
Corollary 2.13.11). Thus f (t)´ h(t) = constant. So all the functions that satisfy v1(t) = g must be of the
form gt + constant.

7 To show that any solution of s1(t) = gv must be of this form we can use the same reasoning we used to
get v(t) = gt + constant.
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Example 3.1.2

Let’s now do a similar but more complicated example.

Example 3.1.3

A car’s brakes can decelerate the car at 64000km/hr2. How fast can the car be driven if it
must be able to stop within a distance of 50m?

Solution. Before getting started, notice that there is a small “trick” in this problem —
several quantities are stated but their units are different. The acceleration is stated in
kilometres per hour2, but the distance is stated in metres. Whenever we come across a
“real world” problem8 we should be careful of the units used.

• We should first define some variables and their units. Denote

– time (in hours) by t,

– the position of the car (in kilometres) at time t by x(t), and

– the velocity (in kilometres per hour) by is v(t).

We can also choose a coordinate system such that x(0) = 0 and the car starts braking
at time t = 0.

• Now let us rewrite the information in the problem in terms of these variables.

– We are told that, at maximum braking, the acceleration v1(t) = x2(t) of the car
is ´64000.

– We need to determine the maximum initial velocity v(0) so that the stopping
distance is at most 50m = 0.05km (being careful with our units). Let us call the
stopping distance xstop which is really x(tstop) where tstop is the stopping time.

• In order to determine xstop we first need to determine tstop, which we will do by
assuming maximum braking from a, yet to be determined, initial velocity of v(0) = q
m/sec.

• Assuming that the car undergoes a constant acceleration at this maximum braking
power, we have

v1(t) = ´64000

This equation is very similar to the ones we had to solve in Example 3.1.2 just above.

As we did there9, we are going to just guess v(t). First, we just guess one func-
tion whose derivative is ´64000, namely ´64000t. Next we observe that, since the
derivative of a constant is zero, any function of the form

v(t) = ´64000 t + c

8 Well — “realer world” would perhaps be a betterer term.
9 Now is a good time to go back and have a read of that example.
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with constant c, has the correct derivative. Finally, the requirement that the initial
velocity v(0) = q forces c = q, so

v(t) = q ´ 64000 t

• From this we can easily determine the stopping time tstop, when the initial velocity
is q, since this is just when v(t) = 0:

0 = v(tstop) = q ´ 64000 ¨ tstop and so

tstop =
q

64000
.

• Armed with the stopping time, how do we get at the stopping distance? We need to
find the formula satisfied by x(t). Again (as per Example 3.1.2) we make use of the
fact that

x1(t) = v(t) = q ´ 64000t.

So we need to guess a function x(t) so that x1(t) = q ´ 64000t. It is not hard to see
that

x(t) = qt ´ 32000t2 + constant

works. Since we know that x(0) = 0, this constant is just zero and

x(t) = qt ´ 32000t2.

• We are now ready to compute the stopping distance (in terms of the, still yet to be
determined, initial velocity q):

xstop = x(tstop) = qtstop ´ 32000t2
stop

=
q2

64000
´

32000q2

640002

=
q2

64000

(
1 ´

1
2

)

=
q2

2 ˆ 64000
Notice that the stopping distance is a quadratic function of the initial velocity — if
you go twice as fast, you need four times the distance to stop.

• But we are told that the stopping distance must be less than 50m = 0.05km. This
means that

xstop =
q2

2 ˆ 64000
ď

5
100

q2
ď

2 ˆ 64000 ˆ 5
100

=
64000 ˆ 10

100
= 6400

Thus we must have q ď 80. Hence the initial velocity can be no greater than 80km/h.

Example 3.1.3
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3.2 Ĳ Related Rates

Consider the following problem

A spherical balloon is being inflated at a rate of 13cm3/sec. How fast is the
radius changing when the balloon has radius 15cm?

There are several pieces of information in the statement:

• The balloon is spherical

• The volume is changing at a rate of 13cm3/sec — so we need variables for volume
(in cm3) and time (in sec). Good choices are V and t.

• We are asked for the rate at which the radius is changing — so we need a variable for
radius and units. A good choice is r, measured in cm — since volume is measured
in cm3.

Since the balloon is a sphere we know10 that

V =
4
3

πr3

Since both the volume and radius are changing with time, both V and r are implicitly
functions of time; we could really write

V(t) =
4
3

πr(t)3.

We are told the rate at which the volume is changing and we need to find the rate at which
the radius is changing. That is, from a knowledge of dV

dt , find the related rate11 dr
dt .

In this case, we can just differentiate our equation by t to get

dV
dt

= 4πr2 dr
dt

This can then be rearranged to give

dr
dt

=
1

4πr2
dV
dt

.

Now we were told that dV
dt = 13, so

dr
dt

=
13

4πr2 .

We were also told that the radius is 15cm, so at that moment in time

dr
dt

=
13

π4 ˆ 152 .

This is a very typical example of a related rate problem. This section is really just a
collection of problems, but all will follow a similar pattern.

10 If you don’t know the formula for the volume of a sphere, now is a good time to revise by looking at
Appendix A.11.

11 Related rate problems are problems in which you are given the rate of change of one quantity and are
to determine the rate of change of another, related, quantity.
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• The statement of the problem will tell you quantities that must be related (above it
was volume, radius and, implicitly, time).

• Typically a little geometry (or some physics or. . . ) will allow you to relate these
quantities (above it was the formula that links the volume of a sphere to its radius).

• Implicit differentiation will then allow you to link the rate of change of one quantity
to another.

Another balloon example

Example 3.2.1

Consider a helium balloon rising vertically from a fixed point 200m away from you. You
are trying to work out how fast it is rising. Now — computing the velocity directly is
difficult, but you can measure angles. You observe that when it is at an angle of π/4 its
angle is changing by 0.05 radians per second.

• Start by drawing a picture with the relevant variables

• So denote the angle to be θ (in radians), the height of the balloon (in m) by h and
time (in seconds) by t. Then trigonometry tells us

h = 200 ¨ tan θ

• Differentiating allows us to relate the rates of change

dh
dt

= 200 sec2 θ ¨
dθ

dt

• We are told that when θ = π/4 we observe dθ
dt = 0.05, so

dh
dt

= 200 ¨ sec2(π/4) ¨ 0.05

= 200 ¨ 0.05 ¨

(?
2
)2

= 200 ¨
5

100
¨ 2 = 20m/s
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• So the balloon is rising at a rate of 20m/s.

Example 3.2.1

The following problem is perhaps the classic related rate problem.

Example 3.2.2

A 5m ladder is leaning against a wall. The floor is quite slippery and the base of the ladder
slides out from the wall at a rate of 1m/s. How fast is the top of the ladder sliding down
the wall when the base of the ladder is 3m from the wall?

• A good first step is to draw a picture stating all relevant quantities. This will also
help us define variables and units.

• So now define x(t) to be the distance between the bottom of the ladder and the wall,
at time t, and let y(t) be the distance between the top of the ladder and the ground
at time t. Measure time in seconds, but both distances in meters.

• We can relate the quantities using Pythagoras:

x2 + y2 = 52

• Differentiating with respect to time then gives

2x
dx
dt

+ 2y
dy
dt

= 0

• We know that dx
dt = 1 and x = 3, so

6 ¨ 1 + 2y
dy
dt

= 0

but we need to determine y before we can go further. Thankfully we know that
x2 + y2 = 25 and x = 3, so y2 = 25 ´ 9 = 16 and12 so y = 4.

12 Since the ladder isn’t buried in the ground, we can discard the solution y = ´4.
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• So finally putting everything together

6 ¨ 1 + 8
dy
dt

= 0

dy
dt

= ´
3
4

m/s.

Thus the top of the ladder is sliding towards the floor at a rate of 3/4m/s.

Example 3.2.2

The next example is complicated by the rates of change being stated not just as “the
rate of change per unit time” but instead being stated as “the percentage rate of change
per unit time”. If a quantity f is changing with rate d f

dt , then we can say that

f is changing at a rate of 100 ¨

d f
dt
f

percent.

Thus if, at time t, f has rate of change r%, then

100
f 1(t)
f (t)

= r ùñ f 1(t) =
r

100
f (t)

so that if h is a very small time increment

f (t + h) ´ f (t)
h

«
r

100
f (t) ùñ f (t + h) « f (t) +

rh
100

f (t)

That is, over a very small time interval h, f increases by the fraction rh
100 of its value at time

t.
So armed with this, let’s look at the problem.

Example 3.2.3

The quantities P, Q and R are functions of time and are related by the equation R = PQ.
Assume that P is increasing instantaneously at the rate of 8% per year (meaning that
100 P1

P = 8) and that Q is decreasing instantaneously at the rate of 2% per year (mean-
ing that 100 Q1

Q = ´2). Determine the percentage rate of change for R.

Solution. This one is a little different — we are given the variables and the formula, so no
picture drawing or defining required. Though we do need to define a time variable — let
t denote time in years.

• Since R(t) = P(t) ¨ Q(t) we can differentiate with respect to t to get

dR
dt

= PQ1 + QP1

• But we need the percentage change in R, namely

100
R1

R
= 100

PQ1 + QP1

R
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but R = PQ, so rewrite it as

= 100
PQ1 + QP1

PQ

= 100
PQ1

PQ
+ 100

QP1

PQ

= 100
Q1

Q
+ 100

P1

P

so we have stated the instantaneous percentage rate of change in R as the sum of the
percentage rate of change in P and Q.

• We know the percentage rate of change of P and Q, so

100
R1

R
= ´2 + 8 = 6

That is, the instantaneous percentage rate of change of R is 6% per year.

Example 3.2.3

Yet another falling object example.

Example 3.2.4

A ball is dropped from a height of 49m above level ground. The height of the ball at time
t is h(t) = 49 ´ 4.9t2 m. A light, which is also 49m above the ground, is 10m to the left
of the ball’s original position. As the ball descends, the shadow of the ball caused by the
light moves across the ground. How fast is the shadow moving one second after the ball
is dropped?

Solution. There is quite a bit going on in this example, so read carefully.

• First a diagram; the one below is perhaps a bit over the top.
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• Let’s call s(t) the distance from the shadow to the point on the ground directly un-
derneath the ball.

• By similar triangles we see that

4.9t2

10
=

49 ´ 4.9t2

s(t)

We can then solve for s(t) by just multiplying both sides by 10
4.9t2 s(t). This gives

s(t) = 10
49 ´ 4.9t2

4.9t2 =
100
t2 ´ 10

• Differentiating with respect to t will then give us the rates,

s1(t) = ´2
100
t3

• So, at t = 1, s1(1) = ´200m/sec. That is, the shadow is moving to the left at
200m/sec.

Example 3.2.4

A more nautical example.
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Example 3.2.5

Two boats spot each other in the ocean at midday — boat A is 15km west of boat B. Boat
A is travelling east at 3km/h and boat B is travelling north at 4km/h. How fast is the
distance between the boats changing at 3pm?

• First we draw a picture.

• Let x(t) be the distance at time t, in km, from boat A to the original position of boat
B (i.e. to the position of boat B at noon). And let y(t) be the distance at time t, in
km, of boat B from its original position. And let z(t) be the distance between the two
boats at time t.

• Additionally we are told that x1 = ´3 and y1 = 4 — notice that x1 ă 0 since that
distance is getting smaller with time, while y1 ą 0 since that distance is increasing
with time.

• Further at 3pm boat A has travelled 9km towards the original position of boat B, so
x = 15 ´ 9 = 6, while boat B has travelled 12km away from its original position, so
y = 12.

• The distances x, y and z form a right-angled triangle, and Pythagoras tells us that

z2 = x2 + y2.

At 3pm we know x = 6, y = 12 so

z2 = 36 + 144 = 180

z =
?

180 = 6
?

5.

• Differentiating then gives

2z
dz
dt

= 2x
dx
dt

+ 2y
dy
dt

= 12 ¨ (´3) + 24 ¨ (4)
= 60.
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Dividing through by 2z = 12
?

5 then gives

dz
dt

=
60

12
?

5
=

5
?

5
=

?
5

So the distance between the boats is increasing at
?

5km/h.

Example 3.2.5

One last one before we move on to another topic.

Example 3.2.6

Consider a cylindrical fuel tank of radius r and length L (in some
appropriate units) that is lying on its side. Suppose that fuel is being
pumped into the tank at a rate q. At what rate is the fuel level
rising?

r

L

Solution. If the tank were vertical everything would be much easier. Unfortunately the
tank is on its side, so we are going to have to work a bit harder to establish the relation
between the depth and volume. Also notice that we have not been supplied with units for
this problem — so we do not need to state the units of our variables.

• Again — draw a picture. Here is an end view of the tank; the shaded part of the
circle is filled with fuel.

θ r

h

• Let us denote by V(t) the volume of fuel in the tank at time t and by h(t) the fuel
level at time t.

• We have been told that V1(t) = q and have been asked to determine h1(t). While it is
possible to do so by finding a formula relating V(t) and h(t), it turns out to be quite
a bit easier to first find a formula relating V and the angle θ shown in the end view.
We can then translate this back into a formula in terms of h using the relation

h(t) = r ´ r cos θ(t).

Once we know θ1(t), we can easily obtain h1(t) by differentiating the above equation.
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• The computation that follows below gets a little involved in places, so we will drop
the “(t)” on the variables V, h and θ. The reader must never forget that these three
quantities are really functions of time, while r and L are constants that do not depend
on time.

• The volume of fuel is L times the cross–sectional area filled by the fuel. That is,

V = L ˆ Area
( )

While we do not have a canned formula for the area of a chord of a circle like this, it
is easy to express the area of the chord in terms of two areas that we can compute.

V = L ˆ Area
( )

= L ˆ

[
Area

(
2θ r

)
´ Area

(
θ r

)]

– The piece of pie 2θ r is the fraction 2θ
2π of the full circle, so its area is

2θ
2π πr2 = θr2.

– The triangle θ r as height r cos θ and base 2r sin θ and hence has area

1
2(r cos θ)(2r sin θ) = r2 sin θ cos θ = r2

2 sin(2θ), where we have used a double-
angle formula (see Appendix A.14).

Subbing these two areas into the above expression for V gives

V = L ˆ

[
θr2

´
r2

2
sin 2θ

]
=

Lr2

2
[
2θ ´ sin 2θ

]

Oof!

• Now we can differentiate to find the rate of change. Recalling that V = V(t) and
θ = θ(t), while r and L are constants,

V1 =
Lr2

2
[2θ1

´ 2 cos 2θ ¨ θ1]

= Lr2
¨ θ1

¨ [1 ´ cos 2θ]

Solving this for θ1 and using V1 = q gives

θ1 =
q

Lr2(1 ´ cos 2θ)

This is the rate at which θ is changing, but we need the rate at which h is changing.
We get this from

h = r ´ r cos θ differentiating this gives
h1 = r sin θ ¨ θ1
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Substituting our expression for θ1 into the expression for h1 gives

h1 = r sin θ ¨
q

Lr2(1 ´ cos 2θ)

• We can clean this up a bit more — recall more double-angle formulas13

h1 = r sin θ ¨
q

Lr2(1 ´ cos 2θ)
substitute cos 2θ = 1 ´ 2 sin2 θ

= r sin θ ¨
q

Lr2 ¨ 2 sin2 θ
now cancel r’s and a sin θ

=
q

2Lr sin θ

• But we can clean this up even more — instead of writing this rate in terms of θ it is
more natural to write it in terms of h (since the initial problem is stated in terms of
h). From the triangle

θ rr − h

and by Pythagoras we have

sin θ =

a

r2 ´ (r ´ h)2

r
=

?
2rh ´ h2

r

and hence

h1 =
q

2L
?

2rh ´ h2
.

• As a check, notice that h1 becomes undefined when h ă 0 and also when h ą 2r,
because then the argument of the square root in the denominator is negative. Both
make sense — the fuel level in the tank must obey 0 ď h ď 2r.

Example 3.2.6

3.3 Ĳ Exponential Growth and Decay — a First Look at Differ-
ential Equations

A differential equation is an equation for an unknown function that involves the deriva-
tive of the unknown function. For example, Newton’s law of cooling says:

13 Take another look at Appendix A.14.
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The rate of change of temperature of an object is proportional to the difference
in temperature between the object and its surroundings.

We can write this more mathematically using a differential equation — an equation for the
unknown function T(t) that also involves its derivative dT

dt (t). If we denote by T(t) the
temperature of the object at time t and by A the temperature of its surroundings, Newton’s
law of cooling says that there is some constant of proportionality, K, such that

dT
dt

(t) = K
[
T(t) ´ A

]

Differential equations play a central role in modelling a huge number of different
phenomena, including the motion of particles, electromagnetic radiation, financial op-
tions, ecosystem populations and nerve action potentials. Most universities offer half a
dozen different undergraduate courses on various aspects of differential equations. We
are barely going to scratch the surface of the subject. At this point we are going to restrict
ourselves to a few very simple differential equations for which we can just guess the solu-
tion. In particular, we shall learn how to solve systems obeying Newton’s law of cooling
in Section 3.3.2, below. But first, here is another slightly simpler example.

3.3.1 §§ Carbon Dating

Scientists can determine the age of objects containing organic material by a method called
carbon dating or radiocarbon dating14. Cosmic rays hitting the atmosphere convert nitrogen
into a radioactive isotope of carbon, 14C, with a half–life of about 5730 years15. Vegetation
absorbs carbon dioxide from the atmosphere through photosynthesis and animals acquire
14C by eating plants. When a plant or animal dies, it stops replacing its carbon and the
amount of 14C begins to decrease through radioactive decay. More precisely, let Q(t)
denote the amount of 14C in the plant or animal t years after it dies. The number of
radioactive decays per unit time, at time t, is proportional to the amount of 14C present at
time t, which is Q(t). Thus

dQ
dt

(t) = ´kQ(t)

Equation 3.3.1 (Radioactive decay).

Here k is a constant of proportionality that is determined by the half–life. We shall explain
what half-life is and also determine the value of k in Example 3.3.3, below. Before we do
so, let’s think about the sign in equation (3.3.1).

• Recall that Q(t) denotes a quantity, namely the amount of 14C present at time t.
There cannot be a negative amount of 14C, nor can this quantity be zero (otherwise
we wouldn’t use carbon dating, so we must have Q(t) ą 0.

14 Willard Libby, of Chicago University was awarded the Nobel Prize in Chemistry in 1960, for developing
radiocarbon dating.

15 A good question to ask yourself is “How can a scientist (who presumably doesn’t live 60 centuries)
measure this quantity?” One way exploits the little piece of calculus we are about to discuss.
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• As the time t increases, Q(t) decreases, because 14C is being continuously converted
into 14N by radioactive decay16. Thus dQ

dt (t) ă 0.

• The signs Q(t) ą 0 and dQ
dt (t) ă 0 are consistent with equation (3.3.1) provided the

constant of proportionality k ą 0.

• In equation (3.3.1), we chose to call the constant of proportionality “´k”. We did so
in order to make k ą 0. We could just as well have chosen to call the constant of
proportionality “K”. That is, we could have replaced equation (3.3.1) by dQ

dt (t) =
KQ(t). The constant of proportionality K would have to be negative, (and K and k
would be related by K = ´k).

Now, let’s guess some solutions to equation (3.3.1). We wish to guess a function Q(t)
whose derivative is just a constant times itself. Here is a short table of derivatives. It is
certainly not complete, but it contains the most important derivatives that we know.

F(t) 1 ta sin t cos t tan t et log t arcsin t arctan t
d
dt F(t) 0 ata´1 cos t ´ sin t sec2 t et 1

t
1?

1´t2
1

1+t2

There is exactly one function in this table whose derivative is just a (nonzero) constant
times itself. Namely, the derivative of et is exactly et = 1 ˆ et. This is almost, but not
quite what we want. We want the derivative of Q(t) to be the constant ´k (rather than the
constant 1) times Q(t). We want the derivative to “pull a constant” out of our guess. That
is exactly what happens when we differentiate eat, where a is a constant. Differentiating
gives

d
dt

eat = aeat

i.e. “pulls the constant a out of eat”.
We have succeeded in guessing a single function, namely e´kt, that obeys equation (3.3.1).

Can we guess any other solutions? Yes. If C is any constant, Ce´kt also obeys equa-
tion (3.3.1):

d
dt

(Ce´kt) = C
d
dt

e´kt = Ce´kt(´k) = ´k(Ce´kt)

You can try guessing some more solutions, but you won’t find any, because with a little
trickery we can prove that a function Q(t) obeys equation (3.3.1) if and only if Q(t) is of
the form Ce´kt, where C is some constant.

The trick17 is to imagine that Q(t) is any (at this stage, unknown) solution to (3.3.1)
and to compare Q(t) and our known solution e´kt by studying the ratio Q(t)/e´kt. We
will show that Q(t) obeys (3.3.1) if and only if the ratio Q(t)/e´kt is a constant, i.e. if and
only if the derivative of the ratio is zero. By the product rule

d
dt
[
Q(t)/e´kt] = d

dt
[
ektQ(t)

]
= kektQ(t) + ektQ1(t)

16 The precise transition is 14C Ñ 14N + e´ + ν̄e where e´ is an electron and ν̄e is an electron neutrino.
17 Notice that is very similar to what we needed in Example 3.1.2, except that here the constant is multi-

plicative rather than additive. That is const ˆ f (t) rather than const + f (t).
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Since ekt is never 0, the right hand side is zero if and only if kQ(t) + Q1(t) = 0; that is
Q1(t) = ´kQ(t). Thus

d
dt

Q(t) = ´kQ(t) ðñ
d
dt
[
Q(t)/e´kt] = 0

as required.
We have succeed in finding all functions that obey (3.3.1). That is, we have found the

general solution to (3.3.1). This is worth stating as a theorem.

A differentiable function Q(t) obeys the differential equation

dQ
dt

(t) = ´kQ(t)

if and only if there is a constant C such that

Q(t) = Ce´kt

Theorem 3.3.2.

Before we start to apply the above theorem, we take this opportunity to remind the
reader that in this text we will use log x with no base to indicate the natural logarithm.
That is

log x = loge x = ln x

Both of the notations log(x) and ln(x) are used widely and the reader should be comfort-
able with both.

Example 3.3.3

In this example, we determine the value of the constant of proportionality k in equa-
tion (3.3.1) that corresponds to the half–life of 14C, which is 5730 years.

• Imagine that some plant or animal contains a quantity Q0 of 14C at its time of death.
Let’s choose the zero point of time t = 0 to be the instant that the plant or animal
died.

• Denote by Q(t) the amount of 14C in the plant or animal t years after it died. Then
Q(t) must obey both equation (3.3.1) and Q(0) = Q0.

• Since Q(t) must obey equation (3.3.1), Theorem 3.3.2 tells us that there must be a
constant C such that Q(t) = Ce´kt. To also have Q0 = Q(0) = Ce´kˆ0, the constant
C must be Q0. That is, Q(t) = Q0e´kt for all t ě 0.

• By definition, the half–life of 14C is the length of time that it takes for half of the 14C
to decay. That is, the half–life t1/2 is determined by

Q(t1/2) =
1
2 Q(0) = 1

2 Q0 but we know Q(t) = Q0e´kt

Q0e´kt1/2 = 1
2 Q0 now cancel Q0

e´kt1/2 = 1
2
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Taking the logarithm of both sides gives

´kt1/2 = log
1
2
= ´ log 2 and so

k =
log 2
t1/2

.

We are told that, for 14C, the half–life t1/2 = 5730, so

k =
log 2
5730

= 0.000121 to 6 digits

Example 3.3.3

From the work in the above example we have accumulated enough new facts to make
a corollary to Theorem 3.3.2.

The function Q(t) satisfies the equation

dQ
dt

= ´kQ(t)

if and only if

Q(t) = Q(0) ¨ e´kt.

The half-life is defined to be the time t1/2 which obeys

Q(t1/2) =
1
2

¨ Q(0).

The half-life is related to the constant k by

t1/2 =
log 2

k

Corollary 3.3.4.

Now here is a typical problem that is solved using Corollary 3.3.4.

Example 3.3.5

A particular piece of parchment contains about 64% as much 14C as plants do today.
Estimate the age of the parchment.

Solution. Let Q(t) denote the amount of 14C in the parchment t years after it was first
created. By equation (3.3.1) and Example 3.3.3,

dQ
dt

= ´kQ(t) with k =
log 2
5730

= 0.000121.
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By Corollary 3.3.4

Q(t) = Q(0) ¨ e´kt

The time at which Q(t) reaches 0.64Q(0) is determined by

Q(t) = 0.64Q(0) but Q(t) = Q(0)e´kt

Q(0)e´kt = 0.64Q(0) cancel Q(0)

e´kt = 0.64 take logarithms
´kt = log 0.64

t =
log 0.64

´k
=

log 0.64
´0.000121

= 3700 to 2 significant digits.

That is, the parchment18 is about 37 centuries old.
Example 3.3.5

We have stated that the half-life of 14C is 5730 years. How can this be determined? We
can explain this using the following example.

Example 3.3.6

A scientist in a B-grade science fiction film is studying a sample of the rare and fictitious
element, implausium19. With great effort he has produced a sample of pure implausium.
The next day — 17 hours later — he comes back to his lab and discovers that his sample
is now only 37% pure. What is the half-life of the element?

Solution. We can again set up our problem using Corollary 3.3.4. Let Q(t) denote the
quantity of implausium at time t, measured in hours. Then we know

Q(t) = Q(0) ¨ e´kt

We also know that

Q(17) = 0.37Q(0).

That enables us to determine k via

Q(17) = 0.37Q(0) = Q(0)e´17k divide both sides by Q(0)

0.37 = e´17k

and so

k = ´
log 0.37

17
= 0.05849

We can then convert this to the half life using Corollary 3.3.4:

t1/2 =
log 2

k
« 11.85 hours

18 The British Museum has an Egyptian mathematical text from the seventeenth century B.C.
19 Implausium leads to even weaker plots than unobtainium.
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While this example is entirely fictitious, one really can use this approach to measure the
half-life of materials.

Example 3.3.6

3.3.2 §§ Newton’s Law of Cooling

Recall Newton’s law of cooling from the start of this section:

The rate of change of temperature of an object is proportional to the difference
in temperature between the object and its surroundings. The temperature of
the surroundings is sometimes called the ambient temperature.

We translated this statement into the following differential equation

dT
dt

(t) = K
[
T(t) ´ A

]

Equation 3.3.7 (Newton’s law of cooling).

where T(t) is the temperature of the object at time t, A is the temperature of its surround-
ings, and K is a constant of proportionality. This mathematical model of temperature
change works well when studying a small object in a large, fixed temperature, environ-
ment. For example, a hot cup of coffee in a large room20.

Before we worry about solving this equation, let’s think a little about the sign of the
constant of proportionality. At any time t, there are three possibilities.

• If T(t) ą A, that is, if the body is warmer than its surroundings, we would expect
heat to flow from the body into its surroundings and so we would expect the body to
cool off so that dT

dt (t) ă 0. For this expectation to be consistent with equation (3.3.7),
we need K ă 0.

• If T(t) ă A, that is the body is cooler than its surroundings, we would expect heat to
flow from the surroundings into the body and so we would expect the body to warm
up so that dT

dt (t) ą 0. For this expectation to be consistent with equation (3.3.7), we
again need K ă 0.

• Finally if T(t) = A, that is the body and its environment have the same temperature,
we would not expect any heat to flow between the two and so we would expect that
dT
dt (t) = 0. This does not impose any condition on K.

In conclusion, we would expect K ă 0. Of course, we could have chosen to call the
constant of proportionality ´k, rather than K. Then the differential equation would be
dT
dt = ´k

(
T ´ A

)
and we would expect k ą 0.

20 It does not work so well when the object is of a similar size to its surroundings since the temperature of
the surroundings will rise as the object cools. It also fails when there are phase transitions involved —
for example, an ice-cube melting in a warm room does not obey Newton’s law of cooling.
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Now to find the general solution to equation (3.3.7). Since this equation is so similar in
form to equation (3.3.1), we might expect a similar solution. Start by trying T(t) = CeKt

and let’s see what goes wrong. Substitute it into the equation:

dT
dt

= K(T(t) ´ A)

KCeKt = KCeKT
´ KA

?0 = ´KA? the constant A causes problems!

Let’s try something a little different — recall that the derivative of a constant is zero. So
we can add or subtract a constant from T(t) without changing its derivative. Set Q(t) =
T(t) + B, then

dQ
dt

(t) =
dT
dt

(t) by Newton’s law of cooling

= K(T(t) ´ A) = K(Q(t) ´ B ´ A)

So if we choose B = ´A then we will have

dQ
dt

(t) = KQ(t)

which is exactly the same form as equation (3.3.1), but with K = ´k. So by Theorem 3.3.2

Q(t) = Q(0)eKt

We can translate back to T(t), since Q(t) = T(t) ´ A and Q(0) = T(0) ´ A. This gives us
the solution.

A differentiable function T(t) obeys the differential equation

dT
dt

(t) = K
[
T(t) ´ A

]

if and only if

T(t) = [T(0) ´ A] eKt + A

Corollary 3.3.8.

Just before we put this into action, we remind the reader that log x = loge x = ln x.

Example 3.3.9

The temperature of a glass of iced tea is initially 5˝. After 5 minutes, the tea has heated to
10˝ in a room where the air temperature is 30˝.

(a) Determine the temperature as a function of time.

(b) What is the temperature after 10 minutes?
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(c) Determine when the tea will reach a temperature of 20˝.

Solution. Part (a)

• Denote by T(t) the temperature of the tea t minutes after it was removed from the
fridge, and let A = 30 be the ambient temperature.

• By Newton’s law of cooling,

dT
dt

= K(T ´ A) = K(T ´ 30)

for some, as yet unknown, constant of proportionality K.

• By Corollary 3.3.8,

T(t) = [T(0) ´ 30] eKt + 30 = 30 ´ 25eKt

since the initial temperature T(0) = 5.

• This solution is not complete because it still contains an unknown constant, namely
K. We have not yet used the given data that T(5) = 10. We can use it to determine
K. At t = 5,

T(5) = 30 ´ 25e5K = 10 rearrange

e5K =
20
25

5K = log
20
25

and so

K =
1
5

log
4
5
= ´0.044629 to 6 digits

Part (b)

• To find the temperature at 10 minutes we can just use the solution we have deter-
mined above.

T(10) = 30 ´ 25e10K

= 30 ´ 25e10ˆ 1
5 log 4

5

= 30 ´ 25e2 log 4
5 = 30 ´ 25elog 16

25

= 30 ´ 16 = 14˝

Part (c)

• We can find when the temperature is 20˝ by solving T(t) = 20:

20 = 30 ´ 25eKt rearrange

eKt =
10
25

=
2
5

Kt = log
2
5

t =
log 2

5
K

= 20.5 minutes to 1 decimal place
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Example 3.3.9

A slightly more gruesome example.

Example 3.3.10

A dead body is discovered at 3:45pm in a room where the temperature is 20˝C. At that time
the temperature of the body is 27˝C. Two hours later, at 5:45pm, the temperature of the
body is 25.3 ˝C. What was the time of death? Note that the normal (adult human) body
temperature is 37˝.

Solution. We will assume21 that the body’s temperature obeys Newton’s law of cooling.

• Denote by T(t) the temperature of the body at time t, with t = 0 corresponding to
3:45pm. We wish to find the time of death — call it td.

• There is a lot of data in the statement of the problem; we are told that

– the ambient temperature: A = 20

– the temperature of the body when discovered: T(0) = 27

– the temperature of the body 2 hours later: T(2) = 25.3

– assuming the person was a healthy adult right up until he died, the temperature
at the time of death: T(td) = 37.

• Since we assume the temperature of the body obeys Newton’s law of cooling, we
use Corollary 3.3.8 to find,

T(t) = [T(0) ´ A] eKt + A = 20 + 7eKt

Two unknowns remain, K and td.

• We can find the constant K by using T(2) = 25.3:

25.3 = T(2) = 20 + 7e2K rearrange

7e2K = 5.3 rearrange a bit more

2K = log
(5.3

7

)

K = 1
2 log

(5.3
7

)
= ´0.139 to 3 decimal places

• Since we know22 that td is determined by T(td) = 37, we have

37 = T(td) = 20 + 7e´0.139td rearrange

e´0.139td = 17
7

´0.139td = log
(17

7

)

td = ´ 1
0.139 log

(17
7

)

= ´6.38 to 2 decimal places

21 We don’t know any other method!
22 Actually, we are assuming again.
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Now 6.38 hours is 6 hours and 0.38 ˆ 60 = 23 minutes. So the time of death was 6
hours and 23 minutes before 3:45pm, which is 9:22am.

Example 3.3.10

A slightly tricky example — we need to determine the ambient temperature from three
measurements at different times.

Example 3.3.11

A glass of room-temperature water is carried out onto a balcony from an apartment where
the temperature is 22˝C. After one minute the water has temperature 26˝C and after two
minutes it has temperature 28˝C. What is the outdoor temperature?

Solution. We will assume that the temperature of the thermometer obeys Newton’s law
of cooling.

• Let A be the outdoor temperature and T(t) be the temperature of the water t minutes
after it is taken outside.

• By Newton’s law of cooling,

T(t) = A +
(
T(0) ´ A

)
eKt

by Corollary 3.3.8. Notice there are 3 unknowns here — A, T(0) and K — so we need
three pieces of information to find them all.

• We are told T(0) = 22, so

T(t) = A +
(
22 ´ A

)
eKt.

• We are also told T(1) = 26, which gives

26 = A +
(
22 ´ A

)
eK rearrange things

eK =
26 ´ A
22 ´ A

• Finally, T(2) = 28, so

28 = A +
(
22 ´ A

)
e2K rearrange

e2K =
28 ´ A
22 ´ A

but eK =
26 ´ A
22 ´ A

, so
(

26 ´ A
22 ´ A

)2

=
28 ´ A
22 ´ A

multiply through by (22 ´ A)2

(26 ´ A)2 = (28 ´ A)(22 ´ A)

We can expand out both sides and collect up terms to get

262
loomoon

=676

´52A + A2 = 28 ˆ 22
loomoon

=616

´50A + A2

60 = 2A
30 = A

So the temperature outside is 30˝.

235



APPLICATIONS OF DERIVATIVES 3.3 EXPONENTIAL GROWTH AND DECAY

Example 3.3.11

3.3.3 §§ Population Growth

Suppose that we wish to predict the size P(t) of a population as a function of the time
t. In the most naive model of population growth, each couple produces β offspring (for
some constant β) and then dies. Thus over the course of one generation β

P(t)
2 children are

produced and P(t) parents die so that the size of the population grows from P(t) to

P(t + tg) = P(t) + β
P(t)

2
looooooomooooooon

parents+offspring

´ P(t)
loomoon

parents die

=
β

2
P(t)

where tg denotes the lifespan of one generation. The rate of change of the size of the
population per unit time is

P(t + tg) ´ P(t)
tg

=
1
tg

[β

2
P(t) ´ P(t)

]
= bP(t)

where b = β´2
2tg

is the net birthrate per member of the population per unit time. If we
approximate

P(t+tg)´P(t)
tg

«
dP
dt

(t)

we get the differential equation

dP
dt

= bP(t)

Equation 3.3.12 (Simple population model).

By Corollary 3.3.4, with ´k replaced by b,

P(t) = P(0) ¨ ebt

This is called the Malthusian23 growth model. It is, of course, very simplistic. One of its
main characteristics is that, since P(t + T) = P(0) ¨ eb(t+T) = P(t) ¨ ebT, every time you
add T to the time, the population size is multiplied by ebT. In particular, the population
size doubles every log 2

b units of time. The Malthusian growth model can be a reasonably
good model only when the population size is very small compared to its environment24.

23 This is named after Rev. Thomas Robert Malthus. He described this model in a 1798 paper called “An
essay on the principle of population”.

24 That is, the population has plenty of food and space to grow.
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A more sophisticated model of population growth, that takes into account the “carrying
capacity of the environment” is considered in the optional subsection below.

Example 3.3.13

In 1927 the population of the world was about 2 billion. In 1974 it was about 4 billion. Esti-
mate when it reached 6 billion. What will the population of the world be in 2100, assuming
the Malthusian growth model?

Solution. We follow our usual pattern for dealing with such problems.

• Let P(t) be the world’s population t years after 1927. Note that 1974 corresponds to
t = 1974 ´ 1927 = 47.

• We are assuming that P(t) obeys equation (3.3.12). So, by Corollary 3.3.4 with ´k
replaced by b,

P(t) = P(0) ¨ ebt

Notice that there are 2 unknowns here — b and P(0) — so we need two pieces of
information to find them.

• We are told P(0) = 2, so

P(t) = 2 ¨ ebt

• We are also told P(47) = 4, which gives

4 = 2 ¨ e47b clean up

e47b = 2 take the log and clean up

b =
log 2

47
= 0.0147 to 3 significant digits

• We now know P(t) completely, so we can easily determine the predicted popula-
tion25 in 2100, i.e. at t = 2100 ´ 1927 = 173.

P(173) = 2e173b = 2e173ˆ0.0147 = 25.4 billion

• Finally, our crude model predicts that the population is 6 billion at the time t that
obeys

P(t) = 2ebt = 6 clean up

ebt = 3 take the log and clean up

t =
log 3

b
= 47

log 3
log 2

= 74.5

which corresponds26 to the middle of 2001.

Example 3.3.13

25 The 2015 Revision of World Population, a publication of the United Nations, predicts that the world’s
population in 2100 will be about 11 billion. They are predicting a reduction in the world population
growth rate due to lower fertility rates, which the Malthusian growth model does not take into account.

26 The world population really reached 6 billion in about 1999.
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§§§ (Optional) — Logistic Population Growth

Logistic growth adds one more wrinkle to the simple population model. It assumes that
the population only has access to limited resources. As the size of the population grows
the amount of food available to each member decreases. This in turn causes the net birth
rate b to decrease. In the logistic growth model b = b0

(
1 ´ P

K
)
, where K is called the

carrying capacity of the environment, so that

P1(t) = b0

(
1 ´

P(t)
K

)
P(t)

We can learn quite a bit about the behaviour of solutions to differential equations like
this, without ever finding formulae for the solutions, just by watching the sign of P1(t).
For concreteness, we’ll look at solutions of the differential equation

dP
dt

(t) =
(

6000 ´ 3P(t)
)

P(t)

We’ll sketch the graphs of four functions P(t) that obey this equation.

• For the first function, P(0) = 0.
• For the second function, P(0) = 1000.
• For the third function, P(0) = 2000.
• For the fourth function, P(0) = 3000.

The sketches will be based on the observation that (6000 ´ 3P) P = 3(2000 ´ P) P

• is zero for P = 0, 2000,
• is strictly positive for 0 ă P ă 2000 and
• is strictly negative for P ą 2000.

Consequently

dP
dt

(t)

$

’

’

’

&

’

’

’

%

= 0 if P(t) = 0
ą 0 if 0 ă P(t) ă 2000
= 0 if P(t) = 2000
ă 0 if P(t) ą 2000

Thus if P(t) is some function that obeys dP
dt (t) =

(
6000 ´ 3P(t)

)
P(t), then as the graph of

P(t) passes through
(
t, P(t)

)

the graph has

$

’

’

’

&

’

’

’

%

slope zero, i.e. is horizontal, if P(t) = 0
positive slope, i.e. is increasing, if 0 ă P(t) ă 2000
slope zero, i.e. is horizontal, if P(t) = 2000
negative slope, i.e. is decreasing, if P(t) ą 2000

as illustrated in the figure
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t

P (t)

1000

2000

3000

As a result,

• if P(0) = 0, the graph starts out horizontally. In other words, as t starts to increase,
P(t) remains at zero, so the slope of the graph remains at zero. The population size
remains zero for all time. As a check, observe that the function P(t) = 0 obeys
dP
dt (t) =

(
6000 ´ 3P(t)

)
P(t) for all t.

• Similarly, if P(0) = 2000, the graph again starts out horizontally. So P(t) remains at
2000 and the slope remains at zero. The population size remains 2000 for all time.
Again, the function P(t) = 2000 obeys dP

dt (t) =
(
6000 ´ 3P(t)

)
P(t) for all t.

• If P(0) = 1000, the graph starts out with positive slope. So P(t) increases with t. As
P(t) increases towards 2000, the slope (6000 ´ 3P(t)

)
P(t), while remaining positive,

gets closer and closer to zero. As the graph approaches height 2000, it becomes more
and more horizontal. The graph cannot actually cross from below 2000 to above
2000, because to do so, it would have to have strictly positive slope for some value
of P above 2000, which is not allowed.

• If P(0) = 3000, the graph starts out with negative slope. So P(t) decreases with
t. As P(t) decreases towards 2000, the slope (6000 ´ 3P(t)

)
P(t), while remaining

negative, gets closer and closer to zero. As the graph approaches height 2000, it
becomes more and more horizontal. The graph cannot actually cross from above
2000 to below 2000, because to do so, it would have to have negative slope for some
value of P below 2000. which is not allowed.

These curves are sketched in the figure below. We conclude that for any initial population
size P(0), except P(0) = 0, the population size approaches 2000 as t Ñ 8.

t

P (t)

1000

2000

3000

Figure 3.3.1.
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3.4 Ĳ Approximating Functions Near a Specified Point — Taylor
Polynomials

Suppose that you are interested in the values of some function f (x) for x near some fixed
point a. When the function is a polynomial or a rational function we can use some arith-
metic (and maybe some hard work) to write down the answer. For example:

f (x) =
x2 ´ 3

x2 ´ 2x + 4

f (1/5) =
1
25 ´ 3

1
25 ´ 2

5 + 4
=

1´75
25

1´10+100
25

=
´74
91

Tedious, but we can do it. On the other hand if you are asked to compute sin(1/10) then
what can we do? We know that a calculator can work it out

sin(1/10) = 0.09983341 . . .

but how does the calculator do this? How did people compute this before calculators27?
A hint comes from the following sketch of sin(x) for x around 0.

´1 ´0.5 0.5 1

´1

´0.5

0.5

1

x

x
sin x

Figure 3.4.1.

The above figure shows that the curves y = x and y = sin x are almost the same when x
is close to 0. Hence if we want the value of sin(1/10) we could just use this approximation
y = x to get

sin(1/10) « 1/10.

Of course, in this case we simply observed that one function was a good approximation
of the other. We need to know how to find such approximations more systematically.

More precisely, say we are given a function f (x) that we wish to approximate close to
some point x = a, and we need to find another function F(x) that

• is simple and easy to compute28

27 Originally the word “calculator” referred not to the software or electronic (or even mechanical) device
we think of today, but rather to a person who performed calculations.

28 It is no good approximating a function with something that is even more difficult to work with.
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• is a good approximation to f (x) for x values close to a.

Further, we would like to understand how good our approximation actually is. Namely
we need to be able to estimate the error | f (x) ´ F(x)|.

There are many different ways to approximate a function and we will discuss one
family of approximations: Taylor polynomials. This is an infinite family of ever improving
approximations, and our starting point is the very simplest.

3.4.1 §§ Zeroth Approximation — the Constant Approximation

The simplest functions are those that are constants. And our zeroth29 approximation will
be by a constant function. That is, the approximating function will have the form F(x) =
A, for some constant A. Notice that this function is a polynomial of degree zero.

To ensure that F(x) is a good approximation for x close to a, we choose A so that f (x)
and F(x) take exactly the same value when x = a.

F(x) = A so F(a) = A = f (a) ùñ A = f (a)

Our first, and crudest, approximation rule is

f (x) « f (a)

Equation 3.4.1 (Constant approximation).

An important point to note is that we need to know f (a) — if we cannot compute that
easily then we are not going to be able to proceed. We will often have to choose a (the
point around which we are approximating f (x)) with some care to ensure that we can
compute f (a).

Here is a figure showing the graphs of a typical f (x) and approximating function F(x).
At x = a, f (x) and F(x) take the same value. For x very near a, the values of f (x) and F(x)

a x

y
y = f(x)

y = F (x) = f(a)

remain close together. But the quality of the approximation deteriorates fairly quickly as x
moves away from a. Clearly we could do better with a straight line that follows the slope
of the curve. That is our next approximation.

29 It barely counts as an approximation at all, but it will help build intuition. Because of this, and the fact
that a constant is a polynomial of degree 0, we’ll start counting our approximations from zero rather
than 1.
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But before then, an example:

Example 3.4.2

Use the constant approximation to estimate e0.1.

Solution. First set f (x) = ex.

• Now we first need to pick a point x = a to approximate the function. This point
needs to be close to 0.1 and we need to be able to evaluate f (a) easily. The obvious
choice is a = 0.

• Then our constant approximation is just

F(x) = f (0) = e0 = 1
F(0.1) = 1

Note that e0.1 = 1.105170918 . . . , so even this approximation isn’t too bad..
Example 3.4.2

3.4.2 §§ First Approximation — the Linear approximation

Our first30 approximation improves on our zeroth approximation by allowing the approx-
imating function to be a linear function of x rather than just a constant function. That is,
we allow F(x) to be of the form A + Bx, for some constants A and B.

To ensure that F(x) is a good approximation for x close to a, we still require that f (x)
and F(x) have the same value at x = a (that was our zeroth approximation). Our ad-
ditional requirement is that their tangent lines at x = a have the same slope — that the
derivatives of f (x) and F(x) are the same at x = a. Hence

F(x) = A + Bx ùñ F(a) = A + Ba = f (a)
F1(x) = B ùñ F1(a) = B = f 1(a)

So we must have B = f 1(a). Substituting this into A+ Ba = f (a) we get A = f (a)´ a f 1(a).
So we can write

F(x) = A + Bx =

A
hkkkkkkkikkkkkkkj

f (a) ´ a f 1(a) + f 1(a) ¨ x
= f (a) + f 1(a) ¨ (x ´ a)

We write it in this form because we can now clearly see that our first approximation is just
an extension of our zeroth approximation. This first approximation is also often called the
linear approximation of f (x) about x = a.

f (x) « f (a) + f 1(a)(x ´ a)

Equation 3.4.3 (Linear approximation).

30 Recall that we started counting from zero.
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We should again stress that in order to form this approximation we need to know f (a) and
f 1(a) — if we cannot compute them easily then we are not going to be able to proceed.

Recall, from Theorem 2.3.2, that y = f (a) + f 1(a)(x ´ a) is exactly the equation of the
tangent line to the curve y = f (x) at a. Here is a figure showing the graphs of a typical
f (x) and the approximating function F(x). Observe that the graph of f (a) + f 1(a)(x ´ a)

a x

y
y = f(x)

y = F (x) = f(a) + f ′(a)(x− a)

remains close to the graph of f (x) for a much larger range of x than did the graph of our
constant approximation, f (a). One can also see that we can improve this approximation
if we can use a function that curves down rather than being perfectly straight. That is our
next approximation.

But before then, back to our example:

Example 3.4.4

Use the linear approximation to estimate e0.1.

Solution. First set f (x) = ex and a = 0 as before.

• To form the linear approximation we need f (a) and f 1(a):

f (x) = ex f (0) = 1
f 1(x) = ex f 1(0) = 1

• Then our linear approximation is

F(x) = f (0) + x f 1(0) = 1 + x
F(0.1) = 1.1

Recall that e0.1 = 1.105170918 . . . , so the linear approximation is almost correct to 3 digits.

Example 3.4.4

It is worth doing another simple example here.

Example 3.4.5

Use a linear approximation to estimate
?

4.1.

Solution. First set f (x) =
?

x. Hence f 1(x) = 1
2

?
x . Then we are trying to approximate

f (4.1). Now we need to choose a sensible a value.
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• We need to choose a so that f (a) and f 1(a) are easy to compute.

– We could try a = 4.1 — but then we need to compute f (4.1) and f 1(4.1) —
which is our original problem and more!

– We could try a = 0 — then f (0) = 0 and f 1(0) = DNE.

– Setting a = 1 gives us f (1) = 1 and f 1(1) = 1
2 . This would work, but we can

get a better approximation by choosing a is closer to 4.1.

– Indeed we can set a to be the square of any rational number and we’ll get a
result that is easy to compute.

– Setting a = 4 gives f (4) = 2 and f 1(4) = 1
4 . This seems good enough.

• Substitute this into equation (3.4.3) to get

f (4.1) « f (4) + f 1(4) ¨ (4.1 ´ 4)

= 2 +
0.1
4

= 2 + 0.025 = 2.025

Notice that the true value is
?

4.1 = 2.024845673 . . . .
Example 3.4.5

3.4.3 §§ Second Approximation — the Quadratic Approximation

We next develop a still better approximation by now allowing the approximating function
be to a quadratic function of x. That is, we allow F(x) to be of the form A + Bx + Cx2, for
some constants A, B and C. To ensure that F(x) is a good approximation for x close to a,
we choose A, B and C so that

• f (a) = F(a) (just as in our zeroth approximation),

• f 1(a) = F1(a) (just as in our first approximation), and

• f 2(a) = F2(a) — this is a new condition.

These conditions give us the following equations

F(x) = A + Bx + Cx2
ùñ F(a) = A + Ba + Ca2 = f (a)

F1(x) = B + 2Cx ùñ F1(a) = B + 2Ca = f 1(a)
F2(x) = 2C ùñ F2(a) = 2C = f 2(a)

Solve these for C first, then B and finally A.

C = 1
2 f 2(a) substitute

B = f 1(a) ´ 2Ca = f 1(a) ´ a f 2(a) substitute again

A = f (a) ´ Ba ´ Ca2 = f (a) ´ a[ f 1(a) ´ a f 2(a)] ´ 1
2 f 2(a)a2
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Then put things back together to build up F(x):

F(x) = f (a) ´ f 1(a)a + 1
2 f 2(a)a2 (this line is A)

+ f 1(a) x ´ f 2(a)ax (this line is Bx)

+ 1
2 f 2(a)x2 (this line is Cx2)

= f (a) + f 1(a)(x ´ a) + 1
2 f 2(a)(x ´ a)2

Oof! We again write it in this form because we can now clearly see that our second ap-
proximation is just an extension of our first approximation.

Our second approximation is called the quadratic approximation:

f (x) « f (a) + f 1(a)(x ´ a) + 1
2 f 2(a)(x ´ a)2

Equation 3.4.6 (Quadratic approximation).

Here is a figure showing the graphs of a typical f (x) and approximating function F(x).

a x

y
y = f(x)

y = F (x) = f(a) + f ′(a)(x− a) + 1
2
f ′′(a)(x− a)2

This new approximation looks better than both the first and second.
Now there is actually an easier way to derive this approximation, which we show you

now. Let us rewrite31 F(x) so that it is easy to evaluate it and its derivatives at x = a:

F(x) = α + β ¨ (x ´ a) + γ ¨ (x ´ a)2

Then

F(x) = α + β ¨ (x ´ a) + γ ¨ (x ´ a)2 F(a) = α = f (a)
F1(x) = β + 2γ ¨ (x ´ a) F1(a) = β = f 1(a)
F2(x) = 2γ F2(a) = 2γ = f 2(a)

And from these we can clearly read off the values of α, β and γ and so recover our function
F(x). Additionally if we write things this way, then it is quite clear how to extend this to
a cubic approximation and a quartic approximation and so on.

Return to our example:

31 Any polynomial of degree two can be written in this form. For example, when a = 1, 3 + 2x + x2 =
6 + 4(x ´ 1) + (x ´ 1)2.
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Example 3.4.7

Use the quadratic approximation to estimate e0.1.

Solution. Set f (x) = ex and a = 0 as before.

• To form the quadratic approximation we need f (a), f 1(a) and f 2(a):

f (x) = ex f (0) = 1
f 1(x) = ex f 1(0) = 1
f 2(x) = ex f 2(0) = 1

• Then our quadratic approximation is

F(x) = f (0) + x f 1(0) +
1
2

x2 f 2(0) = 1 + x +
x2

2
F(0.1) = 1.105

Recall that e0.1 = 1.105170918 . . . , so the quadratic approximation is quite accurate with
very little effort.

Example 3.4.7

Before we go on, let us first introduce (or revise) some notation that will make our
discussion easier.

§§ Whirlwind Tour of Summation Notation

In the remainder of this section we will frequently need to write sums involving a large
number of terms. Writing out the summands explicitly can become quite impractical —
for example, say we need the sum of the first 11 squares:

1 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92 + 102 + 112

This becomes tedious. Where the pattern is clear, we will often skip the middle few terms
and instead write

1 + 22 + ¨ ¨ ¨ + 112.

A far more precise way to write this is using Σ (capital-sigma) notation. For example, we
can write the above sum as

11
ÿ

k=1

k2

This is read as

The sum from k equals 1 to 11 of k2.

More generally
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Let m ď n be integers and let f (x) be a function defined on the integers. Then we
write

n
ÿ

k=m

f (k)

to mean the sum of f (k) for k from m to n:

f (m) + f (m + 1) + f (m + 2) + ¨ ¨ ¨ + f (n ´ 1) + f (n).

Similarly we write

n
ÿ

i=m

ai

to mean

am + am+1 + am+2 + ¨ ¨ ¨ + an´1 + an

for some set of coefficients tam, . . . , anu.

Notation 3.4.8.

Consider the example

7
ÿ

k=3

1
k2 =

1
32 +

1
42 +

1
52 +

1
62 +

1
72

It is important to note that the right hand side of this expression evaluates to a number32;
it does not contain “k”. The summation index k is just a “dummy” variable and it does
not have to be called k. For example

7
ÿ

k=3

1
k2 =

7
ÿ

i=3

1
i2 =

7
ÿ

j=3

1
j2

=
7
ÿ

ℓ=3

1
ℓ2

Also the summation index has no meaning outside the sum. For example

k
7
ÿ

k=3

1
k2

has no mathematical meaning; It is gibberish33.

32 Some careful addition shows it is 46181
176400 .

33 Or possibly gobbledygook. For a discussion of statements without meaning and why one should avoid
them we recommend the book “Bendable learnings: the wisdom of modern management” by Don
Watson.
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3.4.4 §§ Still Better Approximations — Taylor Polynomials

We can use the same strategy to generate still better approximations by polynomials34 of
any degree we like. As was the case with the approximations above, we determine the
coefficients of the polynomial by requiring, that at the point x = a, the approximation and
its first n derivatives agree with those of the original function.

Rather than simply moving to a cubic polynomial, let us try to write things in a more
general way. We will consider approximating the function f (x) using a polynomial, Tn(x),
of degree n — where n is a non-negative integer. As we discussed above, the algebra is
easier if we write

Tn(x) = c0 + c1(x ´ a) + c2(x ´ a)2 + ¨ ¨ ¨ + cn(x ´ a)n

=
n
ÿ

k=0

ck(x ´ a)k using Σ notation

The above form35 36 makes it very easy to evaluate this polynomial and its derivatives at
x = a. Before we proceed, we remind the reader of some notation (see Notation 2.2.8):

• Let f (x) be a function and k be a positive integer. We can denote its kth derivative
with respect to x by

dk f
dxk

(
d
dx

)k
f (x) f (k)(x)

Additionally we will need

34 Polynomials are generally a good choice for an approximating function since they are so easy to work
with. Depending on the situation other families of functions may be more appropriate. For example
if you are approximating a periodic function, then sums of sines and cosines might be a better choice;
this leads to Fourier series.

35 Any polynomial in x of degree n can also be expressed as a polynomial in (x ´ a) of the same degree n
and vice versa. So Tn(x) really still is a polynomial of degree n.

36 Furthermore when x is close to a, (x ´ a)k decreases very quickly as k increases, which often makes the
”high k” terms in Tn(x) very small. This can be a considerable advantage when building up approxi-

mations by adding more and more terms. If we were to rewrite Tn(x) in the form
n
ÿ

k=0

bkxk the ”high k”

terms would typically not be very small when x is close to a.
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Let n be a positive integer37, then n-factorial, denoted n!, is the product

n! = n ˆ (n ´ 1) ˆ ¨ ¨ ¨ ˆ 3 ˆ 2 ˆ 1

Further, we use the convention that

0! = 1

The first few factorials are

1! = 1 2! = 2 3! = 6
4! = 24 5! = 120 6! = 720

Definition 3.4.9 (Factorial).

Now consider Tn(x) and its derivatives:

Tn(x) = c0 +c1(x ´ a) +c2(x ´ a)2 +c3(x ´ a)3 + ¨ ¨ ¨+ cn(x ´ a)n

T1
n(x) = c1 +2c2(x ´ a) +3c3(x ´ a)2 + ¨ ¨ ¨+ ncn(x ´ a)n´1

T2
n(x) = 2c2 +6c3(x ´ a) + ¨ ¨ ¨+ n(n ´ 1)cn(x ´ a)n´2

T3
n (x) = 6c3 + ¨ ¨ ¨+ n(n ´ 1)(n ´ 2)cn(x ´ a)n´3

...

T(n)
n (x) = n! ¨ cn

Now notice that when we substitute x = a into the above expressions only the constant
terms survive and we get

Tn(a) = c0

T1
n(a) = c1

T2
n(a) = 2 ¨ c2

T3
n (a) = 6 ¨ c3

...

T(n)
n (a) = n! ¨ cn

So now if we want to set the coefficients of Tn(x) so that it agrees with f (x) at x = a then
we need

Tn(a) = c0 = f (a) c0 = f (a) =
1
0!

f (a)

37 It is actually possible to define the factorial of positive real numbers and even negative numbers but it
requires more advanced calculus and is outside the scope of this course. The interested reader should
look up the Gamma function.
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We also want the first n derivatives of Tn(x) to agree with the derivatives of f (x) at x = a,
so

T1
n(a) = c1 = f 1(a) c1 = f 1(a) =

1
1!

f 1(a)

T2
n(a) = 2 ¨ c2 = f 2(a) c2 =

1
2

f 2(a) =
1
2!

f 2(a)

T3
n (a) = 6 ¨ c3 = f 3(a) c3 =

1
6

f 3(a) =
1
3!

f 3(a)

More generally, making the kth derivatives agree at x = a requires :

T(k)
n (a) = k! ¨ ck = f (k)(a) ck =

1
k!

f (k)(a)

And finally the nth derivative:

T(n)
n (a) = n! ¨ cn = f (n)(a) cn =

1
n!

f (n)(a)

Putting this all together we have

f (x) « Tn(x) = f (a) + f 1(a)(x ´ a) +
1
2

f 2(a) ¨ (x ´ a)2 + ¨ ¨ ¨ +
1
n!

f (n)(a) ¨ (x ´ a)n

=
n
ÿ

k=0

1
k!

f (k)(a) ¨ (x ´ a)k

Equation 3.4.10 (Taylor polynomial).

Let us formalise this definition.

Let a be a constant and let n be a non-negative integer. The nth order38 Taylor
polynomial for f (x) about x = a is

Tn(x) =
n
ÿ

k=0

1
k!

f (k)(a) ¨ (x ´ a)k.

The special case a = 0 is called a Maclaurin39 polynomial.

Definition 3.4.11 (Taylor polynomial).

Before we proceed with some examples, a couple of remarks are in order.

38 It is sometimes called the nth degree Taylor polynomial, but its degree will actually be less than n if
f (n)(a) = 0.

39 The polynomials are named after Brook Taylor who devised a general method for constructing them
in 1715. Slightly later, Colin Maclaurin made extensive use of the special case a = 0 (with attribution
of the general case to Taylor) and it is now named after him. The special case of a = 0 was worked
on previously by James Gregory and Isaac Newton, and some specific cases were known to the 14th
century Indian mathematician Madhava of Sangamagrama.
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• While we can compute a Taylor polynomial about any a-value (providing the deriva-
tives exist), in order to be a useful approximation, we must be able to compute
f (a), f 1(a), . . . , f (n)(a) easily. This means we must choose the point a with care. In-
deed for many functions the choice a = 0 is very natural — hence the prominence of
Maclaurin polynomials.

• If we have computed the approximation Tn(x), then we can readily extend this to
the next Taylor polynomial Tn+1(x) since

Tn+1(x) = Tn(x) +
1

(n + 1)!
f (n+1)(a) ¨ (x ´ a)n+1

This is very useful if we discover that Tn(x) is an insufficient approximation, because
then we can produce Tn+1(x) without having to start again from scratch.

3.4.5 §§ Some Examples

Let us return to our running example of ex:

Example 3.4.12

The constant, linear and quadratic approximations we used above were the first few
Maclaurin polynomial approximations of ex. That is

T0(x) = 1 T1(x) = 1 + x T2(x) = 1 + x +
x2

2

Since d
dx ex = ex, the Maclaurin polynomials are very easy to compute. Indeed this invari-

ance under differentiation means that

f (n)(x) = ex n = 0, 1, 2, . . . so

f (n)(0) = 1

Substituting this into equation (3.4.10) we get

Tn(x) =
n
ÿ

k=0

1
k!

xk

Thus we can write down the seventh Maclaurin polynomial very easily:

T7(x) = 1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
+

x7

5040

The following figure contains sketches of the graphs of ex and its Taylor polynomials Tn(x)
for n = 0, 1, 2, 3, 4.
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x

y

1 2−1

1

2

3

4

5

6

7

y = T0(x) = 1

y = T1(x) = 1 + x

y = T2(x) = 1 + x+ x2

2

y = T3(x)

y = T4(x)

y = ex

Also notice that if we use T7(1) to approximate the value of e1 we obtain:

e1
« T7(1) = 1 + 1 +

1
2
+

1
6
+

1
24

+
1

120
+

1
720

+
1

5040

=
685
252

= 2.718253968 . . .

The true value of e is 2.718281828 . . . , so the approximation has an error of about 3 ˆ 10´5.
Under the assumption that the accuracy of the approximation improves with n (an

assumption we examine in Subsection 3.4.8 below) we can see that the approximation of e
above can be improved by adding more and more terms. Indeed this is how the expression
for e in equation (2.7.3) in Section 2.7 comes about.

Example 3.4.12

Now that we have examined Maclaurin polynomials for ex we should take a look at log x.
Notice that we cannot compute a Maclaurin polynomial for log x since it is not defined at
x = 0.

Example 3.4.13

Compute the 5th order Taylor polynomial for log x about x = 1.

Solution. We have been told a = 1 and fifth order, so we should start by writing down the
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function and its first five derivatives:

f (x) = log x f (1) = log 1 = 0

f 1(x) =
1
x

f 1(1) = 1

f 2(x) =
´1
x2 f 2(1) = ´1

f 3(x) =
2
x3 f 3(1) = 2

f (4)(x) =
´6
x4 f (4)(1) = ´6

f (5)(x) =
24
x5 f (5)(1) = 24

Substituting this into equation (3.4.10) gives

T5(x) = 0 + 1 ¨ (x ´ 1) +
1
2

¨ (´1) ¨ (x ´ 1)2 +
1
6

¨ 2 ¨ (x ´ 1)3 +
1

24
¨ (´6) ¨ (x ´ 1)4 +

1
120

¨ 24 ¨ (x ´ 1)5

= (x ´ 1) ´
1
2
(x ´ 1)2 +

1
3
(x ´ 1)3

´
1
4
(x ´ 1)4 +

1
5
(x ´ 1)5

Again, it is not too hard to generalise the above work to find the Taylor polynomial of
order n: With a little work one can show that

Tn(x) =
n
ÿ

k=1

(´1)k+1

k
(x ´ 1)k.

Example 3.4.13

For cosine:

Example 3.4.14

Find the 4th order Maclaurin polynomial for cos x.

Solution. We have a = 0 and we need to find the first 4 derivatives of cos x.

f (x) = cos x f (0) = 1
f 1(x) = ´ sin x f 1(0) = 0
f 2(x) = ´ cos x f 2(0) = ´1
f 3(x) = sin x f 3(0) = 0

f (4)(x) = cos x f (4)(0) = 1

Substituting this into equation (3.4.10) gives

T4(x) = 1 + 1 ¨ (0) ¨ x +
1
2

¨ (´1) ¨ x2 +
1
6

¨ 0 ¨ x3 +
1

24
¨ (1) ¨ x4

= 1 ´
x2

2
+

x4

24
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Notice that since the 4th derivative of cos x is cos x again, we also have that the fifth deriva-
tive is the same as the first derivative, and the sixth derivative is the same as the second
derivative and so on. Hence the next four derivatives are

f (4)(x) = cos x f (4)(0) = 1

f (5)(x) = ´ sin x f (5)(0) = 0

f (6)(x) = ´ cos x f (6)(0) = ´1

f (7)(x) = sin x f (7)(0) = 0

f (8)(x) = cos x f (8)(0) = 1

Using this we can find the 8th order Maclaurin polynomial:

T8(x) = 1 ´
x2

2
+

x4

24
´

x6

6!
+

x8

8!

Continuing this process gives us the 2nth Maclaurin polynomial

T2n(x) =
n
ÿ

k=0

(´1)k

(2k)!
¨ x2k

The above formula only works when x is measured in radians, because all of our
derivative formulae for trig functions were developed under the assumption that
angles are measured in radians.

Warning 3.4.15.

Below we plot cos x against its first few Maclaurin polynomial approximations:

cosx ≈ 1 cosx ≈ 1− 1
2!
x2
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cosx ≈ 1− 1
2!
x2 + 1

4!
x4 cosx ≈ 1− 1

2!
x2 + 1

4!
x4 − 1

6!
x6

Example 3.4.15

The above work is quite easily recycled to get the Maclaurin polynomial for sine:

Example 3.4.16

Find the 5th order Maclaurin polynomial for sin x.

Solution. We could simply work as before and compute the first five derivatives of sin x.
But set g(x) = sin x and notice that g(x) = ´ f 1(x), where f (x) = cos x. Then we have

g(0) = ´ f 1(0) = 0
g1(0) = ´ f 2(0) = 1
g2(0) = ´ f 3(0) = 0

g3(0) = ´ f (4)(0) = ´1

g(4)(0) = ´ f (5)(0) = 0

g(5)(0) = ´ f (6)(0) = 1

Hence the required Maclaurin polynomial is

T5(x) = x ´
x3

3!
+

x5

5!

Just as we extended to the 2nth Maclaurin polynomial for cosine, we can also extend our
work to compute the (2n + 1)th Maclaurin polynomial for sine:

T2n+1(x) =
n
ÿ

k=0

(´1)k

(2k + 1)!
¨ x2k+1

The above formula only works when x is measured in radians, because all of our
derivative formulae for trig functions were developed under the assumption that
angles are measured in radians.

Warning 3.4.17.
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Below we plot sin x against its first few Maclaurin polynomial approximations.

sin x ≈ x sin x ≈ x− 1
3!
x3

sin x ≈ x− 1
3!
x3 + 1

5!
x5 sin x ≈ x− 1

3!
x3 + 1

5!
x5 − 1

7!
x7

Example 3.4.17

To get an idea of how good these Taylor polynomials are at approximating sin and cos,
let’s concentrate on sin x and consider x’s whose magnitude |x| ď 1. There are tricks that
you can employ40 to evaluate sine and cosine at values of x outside this range.

If |x| ď 1 radians41, then the magnitudes of the successive terms in the Taylor polyno-
mials for sin x are bounded by

|x| ď 1 1
3! |x|

3
ď 1

6
1
5! |x|

5
ď 1

120 « 0.0083
1
7! |x|

7
ď 1

7! « 0.0002 1
9! |x|

9
ď 1

9! « 0.000003 1
11! |x|

11
ď 1

11! « 0.000000025

From these inequalities, and the graphs on the previous pages, it certainly looks like, for
x not too large, even relatively low order Taylor polynomials give very good approxima-
tions. In Section 3.4.8 we’ll see how to get rigorous error bounds on our Taylor polynomial
approximations.

40 If you are writing software to evaluate sin x, you can always use the trig identity sin(x) = sin(x ´ 2nπ),
to easily restrict to |x| ď π. You can then use the trig identity sin(x) = ´ sin(x ˘ π) to reduce to |x| ď π

2 .
Finally you can use the trig identity sin(x) = ¯ cos(π

2 ˘ x)) to reduce to |x| ď π
4 ă 1.

41 Recall that the derivative formulae that we used to derive the Taylor polynomials are valid only when
x is in radians. The restriction ´1 ď x ď 1 radians translates to angles bounded by 180

π « 57˝.
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3.4.6 §§ Estimating Change and ∆x, ∆y Notation

Suppose that we have two variables x and y that are related by y = f (x), for some func-
tion f . One of the most important applications of calculus is to help us understand what
happens to y when we make a small change in x.

Let x, y be variables related by a function f . That is y = f (x). Then we denote
a small change in the variable x by ∆x (read as “delta x”). The corresponding
small change in the variable y is denoted ∆y (read as “delta y”).

∆y = f (x + ∆x) ´ f (x)

Notation 3.4.18.

In many situations we do not need to compute ∆y exactly and are instead happy with
an approximation. Consider the following example.

Example 3.4.19

Let x be the number of cars manufactured per week in some factory and let y the cost of
manufacturing those x cars. Given that the factory currently produces a cars per week,
we would like to estimate the increase in cost if we make a small change in the number of
cars produced.

Solution. We are told that a is the number of cars currently produced per week; the cost
of production is then f (a).

• Say the number of cars produced is changed from a to a + ∆x (where ∆x is some
small number.

• As x undergoes this change, the costs change from y = f (a) to f (a + ∆x). Hence

∆y = f (a + ∆x) ´ f (a)

• We can estimate this change using a linear approximation. Substituting x = a + ∆x
into the equation (3.4.3) yields the approximation

f (a + ∆x) « f (a) + f 1(a)(a + ∆x ´ a)

and consequently the approximation

∆y = f (a + ∆x) ´ f (a) « f (a) + f 1(a)∆x ´ f (a)

simplifies to the following neat estimate of ∆y:

∆y « f 1(a)∆x

Equation 3.4.20 (Linear approximation of ∆y).
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• In the automobile manufacturing example, when the production level is a cars per
week, increasing the production level by ∆x will cost approximately f 1(a)∆x. The
additional cost per additional car, f 1(a), is called the “marginal cost” of a car.

• If we instead use the quadratic approximation (given by equation (3.4.6)) then we
estimate

f (a + ∆x) « f (a) + f 1(a)∆x + 1
2 f 2(a)∆x2

and so

∆y = f (a + ∆x) ´ f (a) « f (a) + f 1(a)∆x + 1
2 f 2(a)∆x2

´ f (a)

which simplifies to

∆y « f 1(a)∆x + 1
2 f 2(a)∆x2

Equation 3.4.21 (Quadratic approximation of ∆y).

Example 3.4.21

3.4.7 §§ Further Examples

In this subsection we give further examples of computation and use of Taylor approxima-
tions.

Example 3.4.22

Estimate tan 46˝, using the constant-, linear- and quadratic-approximations (equations (3.4.1),
(3.4.3) and (3.4.6)).

Solution. Note that we need to be careful to translate angles measured in degrees to
radians.

• Set f (x) = tan x, x = 46 π
180 radians and a = 45 π

180 = π
4 radians. This is a good choice

for a because

– a = 45˝ is close to x = 46˝. As noted above, it is generally the case that the
closer x is to a, the better various approximations will be.

– We know the values of all trig functions at 45˝.

• Now we need to compute f and its first two derivatives at x = a. It is a good time
to recall the special 1 : 1 :

?
2 triangle

45◦

√
2 1

1
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So

f (x) = tan x f (π/4) = 1

f 1(x) = sec2 x =
1

cos2 x
f 1(π/4) =

1

1/
?

22 = 2

f 2(x) =
2 sin x
cos3 x

f 2(π/4) =
2/

?
2

1/
?

23 = 4

• As x ´ a = 46 π
180 ´ 45 π

180 = π
180 radians, the three approximations are

f (x) « f (a) = 1
f (x) « f (a) + f 1(a)(x ´ a) = 1 + 2 π

180 = 1.034907

f (x) « f (a) + f 1(a)(x ´ a) + 1
2 f 2(a)(x ´ a)2 = 1 + 2 π

180 +
1
24
(

π
180

)2
= 1.035516

For comparison purposes, tan 46˝ really is 1.035530 to 6 decimal places.

Example 3.4.22

All of our derivative formulae for trig functions were developed under the as-
sumption that angles are measured in radians. Those derivatives appeared in
the approximation formulae that we used in Example 3.4.22, so we were obliged
to express x ´ a in radians.

Warning 3.4.23.

Example 3.4.24

Suppose that you are ten meters from a vertical pole. You were contracted to measure the
height of the pole. You can’t take it down or climb it. So you measure the angle subtended
by the top of the pole. You measure θ = 30˝, which gives

h = 10 tan 30˝ = 10?
3

« 5.77m

This is just standard trigonometry — if we know the angle exactly then we know the
height exactly.

However, in the “real world” angles are hard to measure with such precision. If the
contract requires you the measurement of the pole to be accurate within 10 cm, how accu-
rate does your measurement of the angle θ need to be?

Solution. For simplicity42, we are going to assume that the pole is perfectly straight and
perfectly vertical and that your distance from the pole was exactly 10 m.

• Write θ = θ0 + ∆θ where θ is the exact angle, θ0 is the measured angle and ∆θ is the
error.

42 Mathematicians love assumptions that let us tame the real world.
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• Similarly write h = h0 +∆h, where h is the exact height and h0 = 10?
3

is the computed
height. Their difference, ∆h, is the error.

• Then

h0 = 10 tan θ0 h0 + ∆h = 10 tan(θ0 + ∆θ)

∆h = 10 tan(θ0 + ∆θ) ´ 10 tan θ0

We could attempt to solve this equation for ∆θ in terms of ∆h — but it is far simpler
to approximate ∆h using the linear approximation in equation 3.4.20.

• To use equation 3.4.20, replace y with h, x with θ and a with θ0. Our function f (θ) =
10 tan θ and θ0 = 30˝ = π/6 radians. Then

∆y « f 1(a)∆x becomes ∆h « f 1(θ0)∆θ

Since f (θ) = 10 tan θ, f 1(θ) = 10 sec2 θ and

f 1(θ0) = 10 sec2(π/6) = 10 ¨

(
2

?
3

)2

=
40
3

• Putting things together gives

∆h « f 1(θ0)∆θ becomes ∆h «
40
3

∆θ

We can then solve this equation for ∆θ in terms of ∆h:

∆θ «
3
40

∆h

• We are told that we must have |∆h| ă 0.1, so we must have

|∆θ| ď
3

400

This is measured in radians, so converting back to degrees

3
400

¨
180
π

= 0.43˝

Example 3.4.24
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Suppose that you measure, approximately, some quantity. Suppose that the exact
value of that quantity is Q0 and that your measurement yielded Q0 + ∆Q. Then
|∆Q| is called the absolute error of the measurement and 100 |∆Q|

Q0
is called the

percentage error of the measurement. As an example, if the exact value is 4 and
the measured value is 5, then the absolute error is |5 ´ 4| = 1 and the percentage
error is 100 |5´4|

4 = 25. That is, the error, 1, was 25% of the exact value, 4.

Definition 3.4.25.

Example 3.4.26

Suppose that the radius of a sphere has been measured with a percentage error of at most
ε%. Find the corresponding approximate percentage errors in the surface area and volume
of the sphere.

Solution. We need to be careful in this problem to convert between absolute and percent-
age errors correctly.

• Suppose that the exact radius is r0 and that the measured radius is r0 + ∆r.

• Then the absolute error in the measurement is |∆r| and, by definition, the percentage
error is 100 |∆r|

r0
. We are told that 100 |∆r|

r0
ď ε.

• The surface area43 of a sphere of radius r is A(r) = 4πr2. The error in the surface
area computed with the measured radius is

∆A = A(r0 + ∆r) ´ A(r0) « A1(r0)∆r
= 8πr0∆r

where we have made use of the linear approximation, equation (3.4.20).

• The corresponding percentage error is then

100
|∆A|

A(r0)
« 100

|A1(r0)∆r|

A(r0)
= 100

8πr0|∆r|

4πr2
0

= 2 ˆ 100
|∆r|

r0
ď 2ε

• The volume of a sphere44 of radius r is V(r) = 4
3 πr3. The error in the volume com-

puted with the measured radius is

∆V = V(r0 + ∆r) ´ V(r0) « V1(r0)∆r

= 4πr2
0∆r

where we have again made use of the linear approximation, equation (3.4.20).

43 We do not expect you to remember the surface areas of solids for this course.
44 We do expect you to remember the formula for the volume of a sphere.
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• The corresponding percentage error is

100
|∆V|

V(r0)
« 100

|V1(r0)∆r|

V(r0)
= 100

4πr2
0|∆r|

4πr3
0/3

= 3 ˆ 100
|∆r|

r0
ď 3ε

We have just computed an approximation to ∆V. This problem is actually sufficiently
simple that we can compute ∆V exactly:

∆V = V(r0 + ∆r) ´ V(r0) =
4
3 π(r0 + ∆r)3

´ 4
3 πr3

0

• Applying (a + b)3 = a3 + 3a2b + 3ab2 + b3 with a = r0 and b = ∆r, gives

V(r0 + ∆r) ´ V(r0) =
4
3 π
[
r3

0 + 3r2
0∆r + 3r0 (∆r)2 + (∆r)3

]
´ 4

3 πr3
0

= 4
3 π[3r2

0∆r + 3r0 (∆r)2 + (∆r)3]

• Thus the difference between the exact error and the linear approximation to the error
is obtained by retaining only the last two terms in the square brackets. This has
magnitude

4
3 π

ˇ

ˇ3r0 (∆r)2 + (∆r)3ˇ
ˇ = 4

3 π
ˇ

ˇ3r0 + ∆r
ˇ

ˇ(∆r)2

or in percentage terms

100 ¨
1

4
3 πr3

0
¨ 4

3 π
ˇ

ˇ3r0 (∆r)2 + (∆r)3ˇ
ˇ = 100

ˇ

ˇ

ˇ

ˇ

ˇ

3
∆r2

r2
0

+
∆r3

r3
0

ˇ

ˇ

ˇ

ˇ

ˇ

=

(
100

3∆r
r0

)
¨

(
∆r
r0

) ˇ

ˇ

ˇ

ˇ

1 +
∆r
3r0

ˇ

ˇ

ˇ

ˇ

ď 3ε
( ε

100

)
¨

(
1 +

ε

300

)

Since ε is small, we can assume that 1 + ε
300 « 1. Hence the difference between the

exact error and the linear approximation of the error is roughly a factor of ε
100 smaller

than the linear approximation 3ε.

• As an aside, notice that if we argue that ∆r is very small and so we can ignore terms
involving (∆r)2 and (∆r)3 as being really really small, then we obtain

V(r0 + ∆r) ´ V(r0) =
4
3 π[3r2

0∆r +3r0 (∆r)2 + (∆r)3
looooooooooomooooooooooon

really really small

]

« 4
3 π ¨ 3r2

0∆r = 4πr2
0∆r

which is precisely the result of our linear approximation above.

Example 3.4.26
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Example 3.4.27

To compute the height h of a lamp post, the length s of the shadow of a two meter pole is
measured. The pole is 6 m from the lamp post. If the length of the shadow was measured
to be 4 m, with an error of at most one cm, find the height of the lamp post and estimate
the percentage error in the height.

Solution. We should first draw a picture45

• By similar triangles we see that

2
s
=

h
6 + s

from which we can isolate h as a function of s:

h =
2(6 + s)

s
=

12
s
+ 2

• The length of the shadow was measured to be s0 = 4 m. The corresponding height
of the lamp post is

h0 =
12
4

+ 2 = 5m

• If the error in the measurement of the length of the shadow was ∆s, then the exact
shadow length was s = s0 + ∆s and the exact lamp post height is h = f (s0 + ∆s),
where f (s) = 12

s + 2. The error in the computed lamp post height is

∆h = h ´ h0 = f (s0 + ∆s) ´ f (s0)

• We can then make a linear approximation of this error using equation (3.4.20):

∆h « f 1(s0)∆s = ´
12
s2

0
∆s = ´

12
42 ∆s

45 We get to reuse that nice lamp post picture from Example 3.2.4.
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• We are told that |∆s| ď 1
100 m. Consequently, approximately,

|∆h| ď
12
42

1
100

=
3

400

The percentage error is then approximately

100
|∆h|

h0
ď 100

3
400 ˆ 5

= 0.15%

Example 3.4.27

3.4.8 §§ The Error in the Taylor Polynomial Approximations

Any time you make an approximation, it is desirable to have some idea of the size of the
error you introduced. That is, we would like to know the difference R(x) between the
original function f (x) and our approximation F(x):

R(x) = f (x) ´ F(x).

Of course if we know R(x) exactly, then we could recover f (x) = F(x) + R(x) — so this
is an unrealistic hope. In practice we would simply like to bound R(x):

|R(x)| = | f (x) ´ F(x)| ď M

where (hopefully) M is some small number. It is worth stressing that we do not need the
tightest possible value of M, we just need a relatively easily computed M that isn’t too far
off the true value of | f (x) ´ F(x)|.

We will now develop a formula for the error introduced by the constant approxima-
tion, equation (3.4.1) (developed back in Section 3.4.1)

f (x) « f (a) = T0(x) 0th Taylor polynomial

The resulting formula can be used to get an upper bound on the size of the error |R(x)|.
The main ingredient we will need is the Mean-Value Theorem (Theorem 2.13.4) — so

we suggest you quickly revise it. Consider the following obvious statement:

f (x) = f (x) now some sneaky manipulations
= f (a) + ( f (x) ´ f (a))

= f (a)
loomoon

=T0(x)

+( f (x) ´ f (a)) ¨
x ´ a
x ´ a
loomoon

=1

= T0(x) +
f (x) ´ f (a)

x ´ a
loooooomoooooon

looks familiar

¨(x ´ a)

Indeed, this equation is important in the discussion that follows, so we’ll highlight it
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f (x) = T0(x) +
[

f (x) ´ f (a)
x ´ a

]
(x ´ a)

Equation 3.4.28 (We will need it again soon).

The coefficient
f (x) ´ f (a)

x ´ a
of (x ´ a) is the average slope of f (t) as t moves from t = a

to t = x. We can picture this as the slope of the secant joining the points (a, f (a)) and
(x, f (x)) in the sketch below.

a

(
a, f(a)

)

c

(
x, f(x)

)

x t

y

y = f(t)

As t moves from a to x, the instantaneous slope f 1(t) keeps changing. Sometimes f 1(t)
might be larger than the average slope f (x)´ f (a)

x´a , and sometimes f 1(t) might be smaller

than the average slope f (x)´ f (a)
x´a . However, by the Mean-Value Theorem (Theorem 2.13.4),

there must be some number c, strictly between a and x, for which f 1(c) =
f (x) ´ f (a)

x ´ a
exactly.

Substituting this into formula (3.4.28) gives

f (x) = T0(x) + f 1(c)(x ´ a) for some c strictly between a and x

Equation 3.4.29 (Towards the error).

Notice that this expression as it stands is not quite what we want. Let us massage this
around a little more into a more useful form

f (x) ´ T0(x) = f 1(c) ¨ (x ´ a) for some c strictly between a and x

Equation 3.4.30 (The error in constant approximation).

Notice that the MVT doesn’t tell us the value of c, however we do know that it lies
strictly between x and a. So if we can get a good bound on f 1(c) on this interval then we
can get a good bound on the error.

Example 3.4.31

Let us return to Example 3.4.2, and we’ll try to bound the error in our approximation
of e0.1.
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• Recall that f (x) = ex, a = 0 and T0(x) = e0 = 1.

• Then by equation (3.4.30)

e0.1
´ T0(0.1) = f 1(c) ¨ (0.1 ´ 0) with 0 ă c ă 0.1

• Now f 1(c) = ec, so we need to bound ec on (0, 0.1). Since ec is an increasing function,
we know that

e0
ă f 1(c) ă e0.1 when 0 ă c ă 0.1

So one is tempted to write that

|e0.1
´ T0(0.1)| = |R(x)| = | f 1(c)| ¨ (0.1 ´ 0)

ă e0.1
¨ 0.1

And while this is true, it is rather circular. We have just bounded the error in our
approximation of e0.1 by 1

10 e0.1 — if we actually knew e0.1 then we wouldn’t need to
estimate it!

• While we don’t know e0.1 exactly, we do know46 that 1 = e0 ă e0.1 ă e1 ă 3. This
gives us

|R(0.1)| ă 3 ˆ 0.1 = 0.3

That is — the error in our approximation of e0.1 is no greater than 0.3. Recall that we
don’t need the error exactly, we just need a good idea of how large it actually is.

• In fact the real error here is

|e0.1
´ T0(0.1)| = |e0.1

´ 1| = 0.1051709 . . .

so we have over-estimated the error by a factor of 3.

But we can actually go a little further here — we can bound the error above and below.
If we do not take absolute values, then since

e0.1
´ T0(0.1) = f 1(c) ¨ 0.1 and 1 ă f 1(c) ă 3

we can write

1 ˆ 0.1 ď (e0.1
´ T0(0.1)) ď 3 ˆ 0.1

so

T0(0.1) + 0.1 ď e0.1
ď T0(0.1) + 0.3

1.1 ď e0.1
ď 1.3

So while the upper bound is weak, the lower bound is quite tight.

46 Oops! Do we really know that e ă 3? We haven’t proved it. We will do so soon.
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Example 3.4.31

There are formulae similar to equation (3.4.29), that can be used to bound the error in
our other approximations; all are based on generalisations of the MVT. The next one —
for linear approximations — is

f (x) = f (a) + f 1(a)(x ´ a)
looooooooooomooooooooooon

=T1(x)

+1
2 f 2(c)(x ´ a)2 for some c strictly between a and x

which we can rewrite in terms of T1(x):

f (x) ´ T1(x) = 1
2 f 2(c)(x ´ a)2 for some c strictly between a and x

Equation 3.4.32 (The error in linear approximation).

It implies that the error that we make when we approximate f (x) by T1(x) = f (a) +
f 1(a) (x ´ a) is exactly 1

2 f 2(c) (x ´ a)2 for some c strictly between a and x.
More generally

f (x) = f (a) + f 1(a) ¨ (x ´ a) + ¨ ¨ ¨ +
1
n!

f (n)(a) ¨ (x ´ a)n

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

=Tn(x)

+
1

(n + 1)!
f (n+1)(c) ¨ (x ´ a)n+1

for some c strictly between a and x. Again, rewriting this in terms of Tn(x) gives

f (x) ´ Tn(x) =
1

(n + 1)!
f (n+1)(c) ¨ (x ´ a)n+1 for some c strictly between a and x

Equation 3.4.33.

That is, the error introduced when f (x) is approximated by its Taylor polynomial of
order n, is precisely the last term of the Taylor polynomial of order n + 1, but with the
derivative evaluated at some point between a and x, rather than exactly at a. These error
formulae are proven in the optional Section 3.4.9 later in this chapter.

Example 3.4.34

Approximate sin 46˝ using Taylor polynomials about a = 45˝, and estimate the resulting
error.

Solution.

• Start by defining f (x) = sin x and

a = 45˝ = 45 π
180radians x = 46˝ = 46 π

180radians x ´ a = π
180radians
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• The first few derivatives of f at a are

f (x) = sin x f (a) =
1

?
2

f 1(x) = cos x f 1(a) =
1

?
2

f 2(x) = ´ sin x f 2(a) = ´
1

?
2

f (3)(x) = ´ cos x f (3)(a) = ´
1

?
2

• The constant, linear and quadratic Taylor approximations for sin(x) about π
4 are

T0(x) = f (a) =
1

?
2

T1(x) = T0(x) + f 1(a) ¨ (x ´ a) =
1

?
2
+

1
?

2

(
x ´

π

4

)

T2(x) = T1(x) + 1
2 f 2(a) ¨ (x ´ a)2 =

1
?

2
+

1
?

2

(
x ´

π

4

)
´

1
2
?

2

(
x ´

π

4

)2

• So the approximations for sin 46˝ are

sin 46˝
« T0

(
46π

180

)
=

1
?

2
= 0.70710678

sin 46˝
« T1

(
46π

180

)
=

1
?

2
+

1
?

2

( π

180

)
= 0.71944812

sin 46˝
« T2

(
46π

180

)
=

1
?

2
+

1
?

2

( π

180

)
´

1
2
?

2

( π

180

)2
= 0.71934042

• The errors in those approximations are (respectively)

error in 0.70710678 = f 1(c)(x ´ a) = cos c ¨

( π

180

)

error in 0.71944812 =
1
2

f 2(c)(x ´ a)2 = ´
1
2

¨ sin c ¨

( π

180

)2

error in 0.71923272 =
1
3!

f (3)(c)(x ´ a)3 = ´
1
3!

¨ cos c ¨

( π

180

)3

In each of these three cases c must lie somewhere between 45˝ and 46˝.

• Rather than carefully estimating sin c and cos c for c in that range, we make use of a
simpler (but much easier bound). No matter what c is, we know that | sin c| ď 1 and
| cos c| ď 1. Hence

ˇ

ˇerror in 0.70710678
ˇ

ˇ ď

( π

180

)
ă 0.018

ˇ

ˇerror in 0.71944812
ˇ

ˇ ď
1
2

( π

180

)2
ă 0.00015

ˇ

ˇerror in 0.71934042
ˇ

ˇ ď
1
3!

( π

180

)3
ă 0.0000009
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Example 3.4.34

Example 3.4.35 (Showing e ă 3)

In Example 3.4.31 above we used the fact that e ă 3 without actually proving it. Let’s do
so now.

• Consider the linear approximation of ex about a = 0.

T1(x) = f (0) + f 1(0) ¨ x = 1 + x

So at x = 1 we have

e « T1(1) = 2

• The error in this approximation is

ex
´ T1(x) =

1
2

f 2(c) ¨ x2 =
ec

2
¨ x2

So at x = 1 we have

e ´ T1(1) =
ec

2

where 0 ă c ă 1.

• Now since ex is an increasing47 function, it follows that ec ă e. Hence

e ´ T1(1) =
ec

2
ă

e
2

Moving the e
2 to the left hand side and the T1(1) to the right hand side gives

e
2

ă T1(1) = 2

So e ă 4.

• This isn’t as tight as we would like — so now do the same with the quadratic ap-
proximation with a = 0:

ex
« T2(x) = 1 + x +

x2

2

So when x = 1 we have

e « T2(1) = 1 + 1 +
1
2
=

5
2

47 Since the derivative of ex is ex which is positive everywhere, the function is increasing everywhere.
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• The error in this approximation is

ex
´ T2(x) =

1
3!

f 3(c) ¨ x3 =
ec

6
¨ x3

So at x = 1 we have

e ´ T2(1) =
ec

6

where 0 ă c ă 1.

• Again since ex is an increasing function we have ec ă e. Hence

e ´ T2(1) =
ec

6
ă

e
6

That is

5e
6

ă T2(1) =
5
2

So e ă 3 as required.

Example 3.4.35

Example 3.4.36 (More on ex)

We wrote down the general nth order Maclaurin polynomial approximation of ex in Ex-
ample 3.4.12 above.

• Recall that

Tn(x) =
n
ÿ

k=0

1
k!

xk

• The error in this approximation is (by equation (3.4.33))

ex
´ Tn(x) =

1
(n + 1)!

ec

where c is some number between 0 and x.

• So setting x = 1 in this gives

e ´ Tn(1) =
1

(n + 1)!
ec

where 0 ă c ă 1.

• Since ex is an increasing function we know that 1 = e0 ă ec ă e1 ă 3, so the above
expression becomes

1
(n + 1)!

ď e ´ Tn(1) =
1

(n + 1)!
ec

ď
3

(n + 1)!
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• So when n = 9 we have

1
10!

ď e ´

(
1 + 1 +

1
2
+ ¨ ¨ ¨ +

1
9!

)
ď

3
10!

• Now 1/10! ă 3/10! ă 10´6, so the approximation of e by

e « 1 + 1 +
1
2
+ ¨ ¨ ¨ +

1
9!

=
98641
36288

= 2.718281 . . .

is correct to 6 decimal places.

• More generally we know that using Tn(1) to approximate e will have an error of at
most 3

(n+1)! — so it converges very quickly.

Example 3.4.36

Example 3.4.37 (Example 3.4.24 Revisited)

Recall48 that in Example 3.4.24 (measuring the height of the pole), we used the linear ap-
proximation

f (θ0 + ∆θ) « f (θ0) + f 1(θ0)∆θ

with f (θ) = 10 tan θ and θ0 = 30
π

180
to get

∆h = f (θ0 + ∆θ) ´ f (θ0) « f 1(θ0)∆θ which implies that ∆θ «
∆h

f 1(θ0)

• While this procedure is fairly reliable, it did involve an approximation. So that you
could not 100% guarantee to your client’s lawyer that an accuracy of 10 cm was
achieved.

• On the other hand, if we use the exact formula (3.4.29), with the replacements x Ñ

θ0 + ∆θ and a Ñ θ0

f (θ0 + ∆θ) = f (θ0) + f 1(c)∆θ for some c between θ0 and θ0 + ∆θ

in place of the approximate formula (3.4.3), this legality is taken care of:

∆h = f (θ0 + ∆θ) ´ f (θ0) = f 1(c)∆θ for some c between θ0 and θ0 + ∆θ

We can clean this up a little more since in our example f 1(θ) = 10 sec2 θ. Thus for
some c between θ0 and θ0 + ∆θ:

|∆h| = 10 sec2(c)|∆θ|

48 Now is a good time to go back and re-read it.
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• Of course we do not know exactly what c is. But suppose that we know that the angle
was somewhere between 25˝ and 35˝. In other words suppose that, even though we
don’t know precisely what our measurement error was, it was certainly no more
than 5˝.

• Now on the range 25˝ ă c ă 35˝, sec(c) is an increasing and positive function. Hence
on this range

1.217 ¨ ¨ ¨ = sec2 25˝
ď sec2 c ď sec2 35˝ = 1.490 ¨ ¨ ¨ ă 1.491

So

12.17 ¨ |∆θ| ď |∆h| = 10 sec2(c) ¨ |∆θ| ď 14.91 ¨ |∆θ|

• Since we require |∆h| ă 0.1, we need 14.91|∆θ| ă 0.1, that is

|∆θ| ă
0.1

14.91
= 0.0067 . . .

So we must measure angles with an accuracy of no less than 0.0067 radians — which
is

180
π

¨ 0.0067 = 0.38˝.

Hence a measurement error of 0.38˝ or less is acceptable.

Example 3.4.37

3.4.9 §§ (Optional) — Derivation of the Error Formulae

In this section we will derive the formula for the error that we gave in equation (3.4.33) —
namely

Rn(x) = f (x) ´ Tn(x) =
1

(n + 1)!
f (n+1)(c) ¨ (x ´ a)n+1

for some c strictly between a and x, and where Tn(x) is the nth order Taylor polynomial
approximation of f (x) about x = a:

Tn(x) =
n
ÿ

k=0

1
k!

f (k)(a).

Recall that we have already proved a special case of this formula for the constant approx-
imation using the Mean-Value Theorem (Theorem 2.13.4). To prove the general case we
need the following generalisation49 of that theorem:

49 It is not a terribly creative name for the generalisation, but it is an accurate one.
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Let the functions F(x) and G(x) both be defined and continuous on a ď x ď b
and both be differentiable on a ă x ă b. Furthermore, suppose that G1(x) ‰ 0 for
all a ă x ă b. Then, there is a number c obeying a ă c ă b such that

F(b) ´ F(a)
G(b) ´ G(a)

=
F1(c)
G1(c)

Theorem 3.4.38 (Generalised Mean-Value Theorem).

Notice that setting G(x) = x recovers the original Mean-Value Theorem. It turns out
that this theorem is not too difficult to prove from the MVT using some sneaky algebraic
manipulations:

Proof. • First we construct a new function h(x) as a linear combination of F(x) and
G(x) so that h(a) = h(b) = 0. Some experimentation yields

h(x) =
[
F(b) ´ F(a)

]
¨
[
G(x) ´ G(a)

]
´
[
G(b) ´ G(a)

]
¨
[
F(x) ´ F(a)

]

• Since h(a) = h(b) = 0, the Mean-Value theorem (actually Rolle’s theorem) tells us
that there is a number c obeying a ă c ă b such that h1(c) = 0:

h1(x) =
[
F(b) ´ F(a)

]
¨ G1(x) ´

[
G(b) ´ G(a)

]
¨ F1(x) so

0 =
[
F(b) ´ F(a)

]
¨ G1(c) ´

[
G(b) ´ G(a)

]
¨ F1(c)

Now move the G1(c) terms to one side and the F1(c) terms to the other:
[
F(b) ´ F(a)

]
¨ G1(c) =

[
G(b) ´ G(a)

]
¨ F1(c).

• Since we have G1(x) ‰ 0, we know that G1(c) ‰ 0. Further the Mean-Value theorem
ensures50 that G(a) ‰ G(b). Hence we can move terms about to get

[
F(b) ´ F(a)

]
=
[
G(b) ´ G(a)

]
¨

F1(c)
G1(c)

F(b) ´ F(a)
G(b) ´ G(a)

=
F1(c)
G1(c)

as required.

Armed with the above theorem we can now move on to the proof of the Taylor remain-
der formula.

Proof of equation (3.4.33). We begin by proving the remainder formula for n = 1. That is

f (x) ´ T1(x) =
1
2

f 2(c) ¨ (x ´ a)2

50 Otherwise if G(a) = G(b) the MVT tells us that there is some point c between a and b so that G1(c) = 0.
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• Start by setting

F(x) = f (x) ´ T1(x) G(x) = (x ´ a)2

Notice that, since T1(a) = f (a) and T1
1(x) = f 1(a),

F(a) = 0 G(a) = 0
F1(x) = f 1(x) ´ f 1(a) G1(x) = 2(x ´ a)

• Now apply the generalised MVT with b = x: there exists a point q between a and x
such that

F(x) ´ F(a)
G(x) ´ G(a)

=
F1(q)
G1(q)

F(x) ´ 0
G(x) ´ 0

=
f 1(q) ´ f 1(a)

2(q ´ a)

2 ¨
F(x)
G(x)

=
f 1(q) ´ f 1(a)

q ´ a

• Consider the right-hand side of the above equation and set g(x) = f 1(x). Then we
have the term g(q)´g(a)

q´a — this is exactly the form needed to apply the MVT. So now
apply the standard MVT to the right-hand side of the above equation — there is
some c between q and a so that

f 1(q) ´ f 1(a)
q ´ a

=
g(q) ´ g(a)

q ´ a
= g1(c) = f 2(c)

Notice that here we have assumed that f 2(x) exists.

• Putting this together we have that

2 ¨
F(x)
G(x)

=
f 1(q) ´ f 1(a)

q ´ a
= f 2(c)

2
f (x) ´ T1(x)
(x ´ a)2 = f 2(c)

f (x) ´ T1(x) =
1
2!

f 2(c) ¨ (x ´ a)2

as required.

Oof! We have now proved the cases n = 1 (and we did n = 0 earlier).
To proceed — assume we have proved our result for n = 1, 2, . . . , k. We realise that we

haven’t done this yet, but bear with us. Using that assumption we will prove the result is
true for n = k + 1. Once we have done that, then

• we have proved the result is true for n = 1, and

• we have shown if the result is true for n = k then it is true for n = k + 1
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Hence it must be true for all n ě 1. This style of proof is called mathematical induction.
You can think of the process as something like climbing a ladder:

• prove that you can get onto the ladder (the result is true for n = 1), and

• if I can stand on the current rung, then I can step up to the next rung (if the result is
true for n = k then it is also true for n = k + 1)

Hence I can climb as high as like.

• Let k ą 0 and assume we have proved

f (x) ´ Tk(x) =
1

(k + 1)!
f (k+1)(c) ¨ (x ´ a)k+1

for some c between a and x.

• Now set

F(x) = f (x) ´ Tk+1(x) G(x) = (x ´ a)k+1

and notice that, since Tk+1(a) = f (a),

F(a) = f (a) ´ Tk+1(a) = 0 G(a) = 0 G1(x) = (k + 1)(x ´ a)k

and apply the generalised MVT with b = x: hence there exists a q between a and x
so that

F(x) ´ F(a)
G(x) ´ G(a)

=
F1(q)
G1(q)

which becomes

F(x)
(x ´ a)k+1 =

F1(q)
(k + 1)(q ´ a)k rearrange

F(x) =
(x ´ a)k+1

(k + 1)(q ´ a)k ¨ F1(q)

• We now examine F1(q). First carefully differentiate F(x):

F1(x) =
d
dx

[
f (x) ´

(
f (a) + f 1(a)(x ´ a) +

1
2

f 2(a)(x ´ a)2 + ¨ ¨ ¨ +
1
k!

f (k)(x ´ a)k
)]

= f 1(x) ´

(
f 1(a) +

2
2

f 2(a)(x ´ a) +
3
3!

f 3(a)(x ´ a)2 + ¨ ¨ ¨ +
k
k!

f (k)(a)(x ´ a)k´1
)

= f 1(x) ´

(
f 1(a) + f 2(a)(x ´ a) +

1
2

f 3(a)(x ´ a)2 + ¨ ¨ ¨ +
1

(k ´ 1)!
f (k)(a)(x ´ a)k´1

)

Now notice that if we set f 1(x) = g(x) then this becomes

F1(x) = g(x) ´

(
g(a) + g1(a)(x ´ a) +

1
2

g2(a)(x ´ a)2 + ¨ ¨ ¨ +
1

(k ´ 1)!
g(k´1)(a)(x ´ a)k´1

)

So F1(x) is then exactly the remainder formula but for an order k ´ 1 approximation
to the function g(x) = f 1(x).
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• Hence the function F1(q) is the remainder when we approximate f 1(q) with an order
k ´ 1 Taylor polynomial. The remainder formula, equation (3.4.33), then tells us that
there is a number c between a and q so that

F1(q) = g(q) ´

(
g(a) + g1(a)(q ´ a) +

1
2

g2(a)(q ´ a)2 + ¨ ¨ ¨ +
1

(k ´ 1)!
g(k´1)(a)(q ´ a)k´1

)

=
1
k!

g(k)(c)(q ´ a)k =
1
k!

f (k+1)(c)(q ´ a)k

Notice that here we have assumed that f (k+1)(x) exists.

• Now substitute this back into our equation above

F(x) =
(x ´ a)k+1

(k + 1)(q ´ a)k ¨ F1(q)

=
(x ´ a)k+1

(k + 1)(q ´ a)k ¨
1
k!

f (k+1)(c)(q ´ a)k

=
1

(k + 1)k!
¨ f (k+1)(c) ¨

(x ´ a)k+1(q ´ a)k

(q ´ a)k

=
1

(k + 1)!
¨ f (k+1)(c) ¨ (x ´ a)k+1

as required.

So we now know that

• if, for some k, the remainder formula (with n = k) is true for all k times differentiable
functions,

• then the remainder formula is true (with n = k + 1) for all k + 1 times differentiable
functions.

Repeatedly applying this for k = 1, 2, 3, 4, ¨ ¨ ¨ (and recalling that we have shown the re-
mainder formula is true when n = 0, 1) gives equation (3.4.33) for all n = 0, 1, 2, . . . .

3.5 Ĳ Optimisation

One important application of differential calculus is to find the maximum (or minimum)
value of a function. This often finds real world applications in problems such as the fol-
lowing.

Example 3.5.1

A farmer has 400m of fencing materials. What is the largest rectangular paddock that can
be enclosed?

Solution. We will describe a general approach to these sorts of problems in Sections 3.5.2
and 3.5.3 below, but here we can take a stab at starting the problem.
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• Begin by defining variables and their units (more generally we might draw a picture
too); let the dimensions of the paddock be x by y metres.

• The area enclosed is then Am2 where

A = x ¨ y

At this stage we cannot apply the calculus we have developed since the area is a
function of two variables and we only know how to work with functions of a single
variable. We need to eliminate one variable.

• We know that the perimeter of the rectangle (and hence the dimensions x and y) are
constrained by the amount of fencing materials the farmer has to hand:

2x + 2y ď 400

and so we have

y ď 200 ´ x

Clearly the area of the paddock is maximised when we use all the fencing possible,
so

y = 200 ´ x

• Now substitute this back into our expression for the area

A = x ¨ (200 ´ x)

Since the area cannot be negative (and our lengths x, y cannot be negative either),
we must also have

0 ď x ď 200

• Thus the question of the largest paddock enclosed becomes the problem of finding
the maximum value of

A = x ¨ (200 ´ x) subject to the constraint 0 ď x ď 200.

Example 3.5.1

The above example is sufficiently simple that we can likely determine the answer by sev-
eral different methods. In general, we will need more systematic methods for solving
problems of the form

Find the maximum value of y = f (x) subject to a ď x ď b

To do this we need to examine what a function looks like near its maximum and minimum
values.
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3.5.1 §§ Local and Global Maxima and Minima

We start by asking:

Suppose that the maximum (or minimum) value of f (x) is f (c) then what does
that tell us about c?

Notice that we have not yet made the ideas of maximum and minimum very precise.
For the moment think of maximum as “the biggest value” and minimum as “the smallest
value”.

It is important to distinguish between “the smallest value” and “the smallest
magnitude”. For example, because

´5 ă ´1

the number ´5 is smaller than ´1. But the magnitude of ´1, which is | ´ 1| = 1,
is smaller than the magnitude of ´5, which is | ´ 5| = 5. Thus the smallest
number in the set t´1, ´5u is ´5, while the number in the set t´1, ´5u that has
the smallest magnitude is ´1.

Warning 3.5.2.

Now back to thinking about what happens around a maximum. Suppose that the max-
imum value of f (x) is f (c), then for all “nearby” points, the function should be smaller.

Consider the derivative of f 1(c):

f 1(c) = lim
hÑ0

f (c + h) ´ f (c)
h

.

Split the above limit into the left and right limits:

• Consider points to the right of x = c, For all h ą 0,

f (c + h) ď f (c) which implies that
f (c + h) ´ f (c) ď 0 which also implies
f (c + h) ´ f (c)

h
ď 0 since

negative
positive

= negative.
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But now if we squeeze h Ñ 0 we get

lim
hÑ0+

f (c + h) ´ f (c)
h

ď 0

(provided the limit exists).

• Consider points to the left of x = c. For all h ă 0,

f (c + h) ď f (c) which implies that
f (c + h) ´ f (c) ď 0 which also implies
f (c + h) ´ f (c)

h
ě 0 since

negative
negative

= positive.

But now if we squeeze h Ñ 0 we get

lim
hÑ0´

f (c + h) ´ f (c)
h

ě 0

(provided the limit exists).

• So if the derivative f 1(c) exists, then the above right- and left-hand limits must agree,
which forces f 1(c) = 0.

Thus we can conclude that

If the maximum value of f (x) is f (c) and f 1(c) exists, then f 1(c) = 0.

Using similar reasoning one can also see that

If the minimum value of f (x) is f (c) and f 1(c) exists, then f 1(c) = 0.

Notice two things about the above reasoning:

• Firstly, in order for the argument to work we only need that f (x) ă f (c) for x close
to c — it does not matter what happens for x values far from c.

• Secondly, in the above argument we needed to consider f (x) for x both to the left of
and to the right of c. If the function f (x) is defined on a closed interval [a, b], then the
above argument only applies when a ă c ă b — not when c is either of the endpoints
a and b.

Consider the function below
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This function has only 1 maximum value (the middle green point in the graph) and 1
minimum value (the rightmost blue point), however it has 4 points at which the derivative
is zero. In the small intervals around those points where the derivative is zero, we can see
that function is locally a maximum or minimum, even if it is not the global maximum or
minimum. We clearly need to be more careful distinguishing between these cases.

Let I be an interval, like (a, b) or [a, b] for example, and let the function f (x) be
defined for all x P I. Now let c P I. Then

• we say that f (x) has a global (or absolute) minimum on the interval I at the
point x = c if f (x) ě f (c) for all x P I.

• Similarly, we say that f (x) has a global (or absolute) maximum on I at x = c if
f (x) ď f (c) for all x P I.

• We say that f (x) has a local51 minimum on I at x = c if f (x) ě f (c) for all
x P I that are near c. Precisely, if there is a δ ą 0 such that f (x) ě f (c) for
all x P I that are within a distance δ of c.

• Similarly, we say that f (x) has a local maximum on I at x = c if f (x) ď f (c)
for all x P I that are near c. Precisely, if there is a δ ą 0 such that f (x) ď f (c)
for all x P I that are within a distance δ of c.

The global maxima and minima of a function are called the global extrema of the
function, while the local maxima and minima are called the local extrema.

Definition 3.5.3.

Consider again the function we showed in the figure above

It has 3 local maxima and 3 local minima on the interval [a, b]. The global maximum oc-
curs at the middle green point (which is also a local maximum), and the global minimum
occurs at the rightmost blue point (which is also a local minimum).

51 Beware that, while many textbooks use these definitions of local minimum and maximum, some text-
books exclude the endpoints a, b of the interval [a, b] from their definitions. Our definitions allow the
endpoints a and b to be local minima and maxima. Note that, under our definitions, every global
minimum (maximum) is also a local minimum (maximum).
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Using the above definition we can summarise what we have learned above as the
following theorem52:

Let the function f (x) be defined on the interval I and let a, b, c be points in I with
a ă c ă b. If f (x) has a local maximum or local minimum at x = c and if f 1(c)
exists, then f 1(c) = 0.

Theorem 3.5.4.

• It is often (but not always) the case that, when f (x) has a local maximum at x = c, the
function f (x) increases strictly as x approaches c from the left and decreases strictly
as x leaves c to the right. That is, f 1(x) ą 0 for x just to the left of c and f 1(x) ă 0
for x just to the right of c. Then, it is often the case, because f 1(x) is decreasing as x
increases through c, that f 2(c) ă 0.

• Conversely, if f 1(c) = 0 and f 2(c) ă 0, then, just to the right of c, f 1(x) must be
negative, so that f (x) is decreasing, and just to the left of c, f 1(x) must be positive,
so that f (x) is increasing. So f (x) has a local maximum at c.

• Similarly, it is often the case that, when f (x) has a local minimum at x = c, f 1(x) ă 0
for x just to the left of c and f 1(x) ą 0 for x just to the right of c and f 2(x) ą 0.

• Conversely, if f 1(c) = 0 and f 2(c) ą 0, then, just to the right of c, f 1(x) must be
positive, so that f (x) is increasing, and, just to the left of c, f 1(x) must be negative,
so that f (x) is decreasing. So f (x) has a local minimum at c.

Let f (x) be defined on the interval I and let a, b, c P I with a ă c ă b.
If f 1(c) = 0 and f 2(c) ă 0, then f (x) has a local maximum at c.
If f 1(c) = 0 and f 2(c) ą 0, then f (x) has a local minimum at c.
Note the strict inequalities.

Theorem 3.5.5.

Theorem 3.5.4 says that, when f (x) has a local maximum or minimum on an interval
I at the point x = c, there are three possibilities.

• The derivative f 1(c) = 0. This case is illustrated in the following figure.

52 This is one of several important mathematical contributions made by Pierre de Fermat, a French gov-
ernment lawyer and amateur mathematician, who lived in the first half of the seventeenth century.
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x

y

1−1 2 3

y = f(x)

x

y

1−1 2

y = f ′(x)

Observe that, in this example, f 1(x) changes continuously from negative to positive
at the local minimum, taking the value zero at the local minimum (the red dot).

• The derivative f 1(c) does not exist. This case is illustrated in the following figure.

x

y

a b

y = f(x)

x

y

a b

y = f ′(x)

Observe that, in this example, f 1(x) changes discontinuously from negative to posi-
tive at the local minimum (x = 0) and f 1(0) does not exist.

• The point c is an endpoint of the interval I = [a, b]. This case is also illustrated in the
above figure. The endpoints a and b are both local maxima. But f 1(a) and f 1(b) are
not zero.

This theorem demonstrates that the points at which the derivative is zero or does not exist
are very important. It simplifies the discussion that follows if we give these points names.

Let f (x) be a function that is defined on the interval a ă x ă b and let a ă c ă b.
Then

• if f 1(c) exists and is zero we call x = c a critical point of the function, and

• if f 1(c) does not exist then we call x = c a singular point53 of the function.

Definition 3.5.6.
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Note that some people (and texts) will combine both of these cases and call x = c
a critical point when either the derivative is zero or does not exist. The reader
should be aware of the lack of convention on this point54 and should be careful to
understand whether the more inclusive definition of critical point is being used,
or if the text is using the more precise definition that distinguishes critical and
singular points.

Warning 3.5.7.

We’ll now look at a few simple examples involving local maxima and minima, critical
points and singular points. Then we will move on to global maxima and minima.

Example 3.5.8

In this example, we’ll look for local maxima and minima of the function f (x) = x3 ´ 6x
on the interval ´2 ď x ď 3.

• First compute the derivative

f 1(x) = 3x2
´ 6.

Since this is a polynomial it is defined everywhere on the domain and so there will
not be any singular points. So we now look for critical points.

• To do so we look for zeroes of the derivative

f 1(x) = 3x2
´ 6 = 3(x2

´ 2) = 3(x ´
?

2)(x +
?

2).

This derivative takes the value 0 at two different values of x. Namely x = c´ = ´
?

2
and x = c+ =

?
2. Here is a sketch of the graph of f (x).

x

y

1−1 2 3−2

y = f(x) = x3 − 6x

(
c+, f(c+)

)

(
c−, f(c−)

)

53 For c to be a local maximum or minimum of f , the function f must obviously be defined at c. So here
we are considering only points c in the domain of f . We will later, in Section 3.6.2, extend the definition
of singular points of f to points that are not in the domain of f .

54 No pun intended.
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From the figure we see that

– f (x) has a local minimum at the endpoint x = ´2 (i.e. we have f (x) ě f (´2)
whenever x ě ´2 is close to ´2) and

– f (x) has a local minimum at x = c+ (i.e. we have f (x) ě f (c+) whenever x is
close to c+) and

– f (x) has a local maximum at x = c´ (i.e. we have f (x) ď f (c´) whenever x is
close to c´) and

– f (x) has a local maximum at the endpoint x = 3 (i.e. we have f (x) ď f (3)
whenever x ď 3 is close to 3) and

– the global minimum of f (x), for x in the interval ´2 ď x ď 3, is at x = c+ (i.e.
we have f (x) ě f (c+) whenever ´2 ď x ď 3) and

– the global maximum of f (x), for x in the interval ´2 ď x ď 3, is at x = 3 (i.e.
we have f (x) ď f (3) whenever ´2 ď x ď 3).

• Note that we have carefully constructed this example to illustrate that the global
maximum (or minimum) of a function on an interval may or may not also be a criti-
cal point of the function.

Example 3.5.8

Example 3.5.9

In this example, we’ll look for local maxima and minima of the function f (x) = x3 on the
interval ´1 ă x ă 1.

• First compute the derivative:

f 1(x) = 3x2.

Again, this is a polynomial and so defined on all of the domain. The function will
not have singular points, but may have critical points.

• The derivative is zero only when x = 0, so x = c = 0 is the only critical point of the
function.

• The graph of f (x) is sketched below. From that sketch we see that f (x) has neither a
local maximum nor a local minimum at x = c despite the fact that f 1(c) = 0 — we
have f (x) ă f (c) = 0 for all x ă c = 0 and f (x) ą f (c) = 0 for all x ą c = 0.
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x

y

1−1

y = f(x) = x3

(
c, f(c)

)

• Note that this example has been constructed to illustrate that a critical point (or
singular point) of a function need not be a local maximum or minimum for the function.

• Reread Theorem 3.5.4. It says55 “Let ¨ ¨ ¨ . If f (x) has a local maximum/minimum at
x = c and if f 1(c) exists, then f 1(c) = 0”. It does not say that “if f 1(c) = 0 then f has a
local maximum/minimum at x = c”.

Example 3.5.9

Example 3.5.10

In this example, we’ll look for local maxima and minima of the function

f (x) = |x| =

#

x if x ě 0
´x if x ă 0

on the interval ´1 ă x ă 1 and we’ll also look for local maxima and minima of the
function

g(x) = x2/3

on the interval ´1 ă x ă 1.

• Again, start by computing the derivatives (reread Example 2.2.10):

f 1(x) =

$

’

&

’

%

1 if x ą 0
undefined if x = 0
´1 if x ă 0

g1(x) =

#

2
3 x´1/3 if x ‰ 0
undefined if x = 0

55 A very common error of logic that people make is “Affirming the consequent”. When the statement “if
P then Q” is true, observing Q does not imply P. (“Affirming the consequent” eliminates “not” from the
previous sentence.) For example, “If he is Shakespeare, then he is dead,” and “That man is dead.” does
not imply “He must be Shakespeare.”. Or you may have also seen someone use this reasoning: “If a
person is a genius before their time then they are misunderstood.” “I am misunderstood.” “So I must
be a genius before my time.”.

285



APPLICATIONS OF DERIVATIVES 3.5 OPTIMISATION

• These derivatives never take the value 0, so the functions f (x) and g(x) do not have
any critical points. However both derivatives do not exist at the point x = 0, so that
point is a singular point for both f (x) and g(x).

• Here is a sketch of the graph of f (x)

x

y

1−1

y = f(x) = |x|

and a sketch of the graph of g(x).

x

y

1−1

y = g(x) = x2/3

From the figures we see that both f (x) and g(x) have a local (and in fact global)
minimum at x = 0 despite the fact that x = 0 is not a critical point.

• Reread Theorem 3.5.4 yet again. It says “Let ¨ ¨ ¨ . If f (x) has a local maximum or
local minimum at x = c and if f is differentiable at x = c, then f 1(c) = 0”. It says
nothing about what happens at points where the derivative does not exist. Indeed
that is why we have to consider both critical points and singular points when we
look for maxima and minima.

Example 3.5.10

3.5.2 §§ Finding Global Maxima and Minima

We now have a technique for finding local maxima and minima — just look at endpoints
of the interval of interest and for values of x for which either f 1(x) = 0 or f 1(x) does not
exist. What about finding global maxima and minima? We’ll start by stating explicitly
that, under appropriate hypotheses, global maxima and minima are guaranteed to exist.
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Let the function f (x) be defined and continuous on the closed, finite interval56

´8 ă a ď x ď b ă 8. Then f (x) attains a maximum and a minimum at least
once. That is, there exist numbers a ď xm, xM ď b such that

f (xm) ď f (x) ď f (xM) for all a ď x ď b

Theorem 3.5.11.

So let’s again consider the question

Suppose that the maximum (or minimum) value of f (x), for a ď x ď b, is f (c).
What does that tell us about c?

If c obeys a ă c ă b (note the strict inequalities), then f has a local maximum (or minimum)
at x = c and Theorem 3.5.4 tells us that either f 1(c) = 0 or f 1(c) does not exist. The only
other place that a maximum or minimum can occur are at the ends of the interval. We can
summarise this as:

If f (x) has a global maximum or global minimum, for a ď x ď b, at x = c then
there are 3 possibilities. Either

• f 1(c) = 0, or

• f 1(c) does not exist, or

• c = a or c = b.

That is, a global maximum or minimum must occur either at a critical point, a
singular point or at the endpoints of the interval.

Theorem 3.5.12.

This theorem provides the basis for a method to find the maximum and minimum
values of f (x) for a ď x ď b:

56 The hypotheses that f (x) be continuous and that the interval be finite and closed are all essential. We
suggest that you find three functions f1(x), f2(x) and f3(x) with f1 defined but not continuous on
0 ď x ď 1, f2 defined and continuous on ´8 ă x ă 8, and f3 defined and continuous on 0 ă x ă 1,
and with none of f1, f2 and f3 attaining either a global maximum or a global minimum.

287



APPLICATIONS OF DERIVATIVES 3.5 OPTIMISATION

Let f (x) be a function on the interval a ď x ď b. Then to find the global maximum
and minimum of the function:

• Make a list of all values of c, with a ď c ď b, for which

– f 1(c) = 0, or

– f 1(c) does not exist, or

– c = a or c = b.

That is — compute the function at all the critical points, singular points,
and endpoints.

• Evaluate f (c) for each c in that list. The largest (or smallest) of those values
is the largest (or smallest) value of f (x) for a ď x ď b.

Corollary 3.5.13.

Let’s now demonstrate how to use this strategy. The function in this first example is
not too simple — but it is a good example of a function that contains both a singular point
and a critical point.

Example 3.5.14

Find the largest and smallest values of the function f (x) = 2x5/3 + 3x2/3 for ´1 ď x ď 1.

Solution. We will apply the method in Corollary 3.5.13. It is perhaps easiest to find the
values at the endpoints of the intervals and then move on to the values at any critical or
singular points.

• Before we get into things, notice that we can rewrite the function by factoring it:

f (x) = 2x5/3 + 3x2/3 = x2/3
¨ (2x + 3)

• Let’s compute the function at the endpoints of the interval:

f (1) = 2 + 3 = 5

f (´1) = 2 ¨ (´1)5/3 + 3 ¨ (´1)2/3 = ´2 + 3 = 1

• To compute the function at the critical and singular points we first need to find the
derivative:

f 1(x) = 2 ¨
5
3

x2/3 + 3 ¨
2
3

x´1/3

=
10
3

x2/3 + 2x´1/3

=
10x + 6
3x1/3
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• Notice that the numerator and denominator are defined for all x. The only place the
derivative is undefined is when the denominator is zero. Hence the only singular
point is at x = 0. The corresponding function value is

f (0) = 0

• To find the critical points we need to solve f 1(x) = 0:

0 =
10x + 6
3x1/3

Hence we must have 10x = ´6 or x = ´3/5. The corresponding function value is

f (x) = x2/3
¨ (2x + 3) recall this from above, then

f (´3/5) = (´3/5)2/3
¨

(
2 ¨

´3
5

+ 3
)

=

(
9

25

)1/3

¨
´6 + 15

5

=

(
9

25

)1/3

¨
9
5

« 1.28

Note that if we do not want to approximate the root (if, for example, we do not have
a calculator handy), then we can also write

f (´3/5) =
(

9
25

)1/3

¨
9
5

=

(
9
25

)1/3

¨
9

25
¨ 5

= 5 ¨

(
9

25

)4/3

Since 0 ă 9/25 ă 1, we know that 0 ă
( 9

25

)4/3
ă 1, and hence

0 ă f (´3/5) = 5 ¨

(
9

25

)4/3

ă 5.

• We summarise our work in this table

c ´3
5 0 ´1 1

type critical point singular point endpoint endpoint

f (c) 9
5

3
b

9
25 « 1.28 0 1 5

• The largest value of f in the table is 5 and the smallest value of f in the table is 0.

• Thus on the interval ´1 ď x ď 1 the global maximum of f is 5, and is taken at x = 1,
while the global minimum value of f (x) is 0, and is taken at x = 0.
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• For completeness we also sketch the graph of this function on the same interval.

x

y

1−1

y = f(x) = 2x5/3 + 3x2/3

Later (in Section 3.6) we will see how to construct such a sketch without using a
calculator or computer.

Example 3.5.14

3.5.3 §§ Max/Min Examples

As noted at the beginning of this section, the problem of finding maxima and minima is
a very important application of differential calculus in the real world. We now turn to a
number of examples of this process. But to guide the reader we will describe a general
procedure to follow for these problems.

(1) Read — read the problem carefully. Work out what information is given in the state-
ment of the problem and what we are being asked to compute.

(2) Diagram — draw a diagram. This will typically help you to identify what you know
about the problem and what quantities you need to work out.

(3) Variables — assign variables to the quantities in the problem along with their units. It
is typically a good idea to make sensible choices of variable names: A for area, h for
height, t for time etc.

(4) Relations — find relations between the variables. By now you should know the quan-
tity we are interested in (the one we want to maximise or minimise) and we need to
establish a relation between it and the other variables.

(5) Reduce — the relation down to a function of one variable. In order to apply the cal-
culus we know, we must have a function of a single variable. To do this we need to
use all the information we have to eliminate variables. We should also work out the
domain of the resulting function.

(6) Maximise or minimise — we can now apply the methods of Corollary 3.5.13 to find
the maximum or minimum of the quantity we need (as the problem dictates).
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(7) Be careful — make sure your answer makes sense. Make sure quantities are physical.
For example, lengths and areas cannot be negative.

(8) Answer the question — be sure your answer really answers the question asked in the
problem.

Let us start with a relatively simple problem:

Example 3.5.15

A closed rectangular container with a square base is to be made from two different mate-
rials. The material for the base costs $5 per square meter, while the material for the other
five sides costs $1 per square meter. Find the dimensions of the container which has the
largest possible volume if the total cost of materials is $72.

Solution. We can follow the steps we outlined above to find the solution.

• We need to determine the area of the two types of materials used and the corre-
sponding total cost.

• Draw a picture of the box.

The more useful picture is the unfolded box on the right.

• In the picture we have already introduced two variables. The square base has side-
length b metres and it has height h metres. Let the area of the base be Ab and the
area of the other fives sides be As (both in m2), and the total cost be C (in dollars).
Finally let the volume enclosed be Vm3.

• Some simple geometry tells us that

Ab = b2

As = 4bh + b2

V = b2h

C = 5 ¨ Ab + 1 ¨ As = 5b2 + 4bh + b2 = 6b2 + 4bh.
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• To eliminate one of the variables we use the fact that the total cost is $72.

C = 6b2 + 4bh = 72 rearrange

4bh = 72 ´ 6b2 isolate h

h =
72 ´ 6b2

4b
=

3
2

¨
12 ´ b2

b

Substituting this into the volume gives

V = b2h =
3b
2
(12 ´ b2) = 18b ´

3
2

b3

Now note that since b is a length it cannot be negative, so b ě 0. Further since
volume cannot be negative, we must also have

12 ´ b2
ě 0

and so b ď
?

12.

• Now we can apply Corollary 3.5.13 on the above expression for the volume with
0 ď b ď

?
12. The endpoints give:

V(0) = 0

V(
?

12) = 0

The derivative is

V1(b) = 18 ´
9b2

2

Since this is a polynomial there are no singular points. However we can solve
V1(b) = 0 to find critical points:

18 ´
9b2

2
= 0 divide by 9 and multiply by 2

4 ´ b2 = 0

Hence b = ˘2. Thus the only critical point in the domain is b = 2. The correspond-
ing volume is

V(2) = 18 ˆ 2 ´
3
2

ˆ 23

= 36 ´ 12 = 24.

So by Corollary 3.5.13, the maximum volume is when 24 when b = 2 and

h =
3
2

¨
12 ´ b2

b
=

3
2

12 ´ 4
2

= 6.

• All our quantities make sense; lengths, areas and volumes are all non-negative.
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• Checking the question again, we see that we are asked for the dimensions of the
container (rather than its volume) so we can answer with

The container with dimensions 2 ˆ 2 ˆ 6m will be the largest possible.

Example 3.5.15

Example 3.5.16

A rectangular sheet of cardboard is 6 inches by 9 inches. Four identical squares are cut
from the corners of the cardboard, as shown in the figure below, and the remaining piece
is folded into an open rectangular box. What should the size of the cut out squares be in
order to maximize the volume of the box?

Solution. This one is quite similar to the previous one, so we perhaps don’t need to go
into so much detail.

• After reading carefully we produce the following picture:

• Let the height of the box be x inches, and the base be ℓ ˆ w inches. The volume of
the box is then V cubic inches.

• Some simple geometry tells us that ℓ = 9 ´ 2x, w = 6 ´ 2x and so

V = x(9 ´ 2x)(6 ´ 2x)cubic inches

= 54x ´ 30x2 + 4x3.

Notice that since all lengths must be non-negative, we must have

x, ℓ, w ě 0

and so 0 ď x ď 3 (if x ą 3 then w ă 0).

• We can now apply Corollary 3.5.13. First the endpoints of the interval give

V(0) = 0 V(3) = 0
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The derivative is

V1(x) = 54 ´ 60x + 12x2

= 6(9 ´ 10x + 2x2)

Since this is a polynomial there are no singular points. To find critical points we
solve V1(x) = 0 to get

x˘ =
10 ˘

?
100 ´ 4 ˆ 2 ˆ 9

4

=
10 ˘

?
28

4
=

10 ˘ 2
?

7
4

=
5 ˘

?
7

2

We can then use a calculator to approximate

x+ « 3.82 x´ « 1.18.

So x´ is inside the domain, while x+ lies outside.

Alternatively57, we can bound x˘ by first noting that 2 ď
?

7 ď 3. From this we
know that

1 =
5 ´ 3

2
ď x´ =

5 ´
?

7
2

ď
5 ´ 2

2
= 1.5

3.5 =
5 + 2

2
ď x+ =

5 +
?

7
2

ď
5 + 3

2
= 4

• Since the volume is zero when x = 0, 3, it must be the case that the volume is max-
imised when x = x´ = 5´

?
7

2 .

• Notice that since 0 ă x´ ă 3 we know that the other lengths are positive, so our
answer makes sense. Further, the question only asks for the length x and not the
resulting volume so we have answered the question.

Example 3.5.16

There is a new wrinkle in the next two examples. Each involves finding the minimum
value of a function f (x) with x running over all real numbers, rather than just over a finite
interval as in Corollary 3.5.13. Both in Example 3.5.18 and in Example 3.5.19 the function
f (x) tends to +8 as x tends to either +8 or ´8. So the minimum value of f (x) will be
achieved for some finite value of x, which will be a local minimum as well as a global
minimum.

57 Say if we do not have a calculator to hand, or your instructor insists that the problem be done without
one.
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Let f (x) be defined and continuous for all ´8 ă x ă 8. Let c be a finite real
number.

(a) If lim
xÑ+8

f (x) = +8 and lim
xÑ´8

f (x) = +8 and if f (x) has a global minimum

at x = c, then there are 2 possibilities. Either

• f 1(c) = 0, or

• f 1(c) does not exist

That is, a global minimum must occur either at a critical point or at a singular
point.

(b) If lim
xÑ+8

f (x) = ´8 and lim
xÑ´8

f (x) = ´8 and if f (x) has a global maximum

at x = c, then there are 2 possibilities. Either

• f 1(c) = 0, or

• f 1(c) does not exist

That is, a global maximum must occur either at a critical point or at a singular
point.

Theorem 3.5.17.

Example 3.5.18

Find the point on the line y = 6 ´ 3x that is closest to the point (7, 5).

Solution. In this problem

• A simple picture

• Some notation is already given to us. Let a point on the line have coordinates (x, y),
and we do not need units. And let ℓ be the distance from the point (x, y) to the
point (7, 5).
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• Since the points are on the line the coordinates (x, y) must obey

y = 6 ´ 3x

Notice that x and y have no further constraints. The distance ℓ is given by

ℓ2 = (x ´ 7)2 + (y ´ 5)2

• We can now eliminate the variable y:

ℓ2 = (x ´ 7)2 + (y ´ 5)2

= (x ´ 7)2 + (6 ´ 3x ´ 5)2 = (x ´ 7)2 + (1 ´ 3x)2

= x2
´ 14x + 49 + 1 ´ 6x + 9x2 = 10x2

´ 20x + 50

= 10(x2
´ 2x + 5)

ℓ =
?

10 ¨
a

x2 ´ 2x + 5

Notice that as x Ñ ˘8 the distance ℓ Ñ +8.

• We can now apply Theorem 3.5.17

– Since the distance is defined for all real x, we do not have to check the endpoints
of the domain — there are none.

– Form the derivative:

dℓ
dx

=
?

10
2x ´ 2

2
?

x2 ´ 2x + 5

It is zero when x = 1, and undefined if x2 ´ 2x + 5 ă 0. However, since

x2
´ 2x + 5 = (x2

´ 2x + 1) + 4 = (x ´ 1)2
looomooon

ě0

+4

we know that x2 ´ 2x + 5 ě 4. Thus the function has no singular points and the
only critical point occurs at x = 1. The corresponding function value is then

ℓ(1) =
?

10
?

1 ´ 2 + 5 = 2
?

10.

– Thus the minimum value of the distance is ℓ = 2
?

10 and occurs at x = 1.

• This answer makes sense — the distance is not negative.

• The question asks for the point that minimises the distance, not that minimum dis-
tance. Hence the answer is x = 1, y = 6 ´ 3 = 3. I.e.

The point that minimises the distance is (1, 3).
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Notice that we can make the analysis easier by observing that the point that minimises
the distance also minimises the squared-distance. So that instead of minimising the func-
tion ℓ, we can just minimise ℓ2:

ℓ2 = 10(x2
´ 2x + 5)

The resulting algebra is a bit easier and we don’t have to hunt for singular points.
Example 3.5.18

Example 3.5.19

Find the minimum distance from (2, 0) to the curve y2 = x2 + 1.

Solution. This is very much like the previous question.

• After reading the problem carefully we can draw a picture

x

y

(2, 0)

(x, y)

• In this problem we do not need units and the variables x, y are supplied. We define
the distance to be ℓ and it is given by

ℓ2 = (x ´ 2)2 + y2.

As noted in the previous problem, we will minimise the squared-distance since that
also minimises the distance.

• Since x, y satisfy y2 = x2 + 1, we can write the distance as a function of x:

ℓ2 = (x ´ 2)2 + y2 = (x ´ 2)2 + (x2 + 1)

Notice that as x Ñ ˘8 the squared-distance ℓ2 Ñ +8.

• Since the squared-distance is a polynomial it will not have any singular points, only
critical points. The derivative is

d
dx

ℓ2 = 2(x ´ 2) + 2x = 4x ´ 4

so the only critical point occurs at x = 1.
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• When x = 1, y = ˘
?

2 and the distance is

ℓ2 = (1 ´ 2)2 + (1 + 1) = 3 ℓ =
?

3

and thus the minimum distance from the curve to (2, 0) is
?

3.

Example 3.5.19

Example 3.5.20

A water trough is to be constructed from a metal sheet of width 45 cm by bending up one
third of the sheet on each side through an angle θ. Which θ will allow the trough to carry
the maximum amount of water?

Solution. Clearly 0 ď θ ď π, so we are back in the domain58 of Corollary 3.5.13.

• After reading the problem carefully we should realise that it is really asking us to
maximise the cross-sectional area. A figure really helps.

• From this we are led to define the height h cm and cross-sectional area A cm2. Both
are functions of θ.

h = 15 sin θ

while the area can be computed as the sum of the central 15 ˆ h rectangle, plus two
triangles. Each triangle has height h and base 15 cos θ. Hence

A = 15h + 2 ¨
1
2

¨ h ¨ 15 cos θ

= 15h (1 + cos θ)

• Since h = 15 sin θ we can rewrite the area as a function of just θ:

A(θ) = 225 sin θ (1 + cos θ)

where 0 ď θ ď π.

58 Again, no pun intended.
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• Now we use Corollary 3.5.13. The ends of the interval give

A(0) = 225 sin 0(1 + cos 0) = 0
A(π) = 225 sin π(1 + cos π) = 0

The derivative is

A1(θ) = 225 cos θ ¨ (1 + cos θ) + 225 sin θ ¨ (´ sin θ)

= 225
[
cos θ + cos2 θ ´ sin2 θ

]
recall sin2 θ = 1 ´ cos2 θ

= 225
[
cos θ + 2 cos2 θ ´ 1

]

This is a continuous function, so there are no singular points. However we can still
hunt for critical points by solving A1(θ) = 0. That is

2 cos2 θ + cos θ ´ 1 = 0 factor carefully
(2 cos θ ´ 1)(cos θ + 1) = 0

Hence we must have cos θ = ´1 or cos θ = 1
2 . On the domain 0 ď θ ď π, this means

θ = π/3 or θ = π.

A(π) = 0
A(π/3) = 225 sin(π/3)(1 + cos(π/3))

= 225 ¨

?
3

2
¨

(
1 +

1
2

)

= 225 ¨
3
?

3
4

« 292.28

• Thus the cross-sectional area is maximised when θ =
π

3
.

Example 3.5.20

Example 3.5.21

Find the points on the ellipse x2

4 + y2 = 1 that are nearest to and farthest from the point
(1, 0).

Solution. While this is another distance problem, the possible values of x, y are bounded,
so we need Corollary 3.5.13 rather than Theorem 3.5.17.

• We start by drawing a picture:
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x

y

(2, 0)(1, 0)(−2, 0)

(
x, y(x)

)

• Let ℓ be the distance from the point (x, y) on the ellipse to the point (1, 0). As was
the case above, we will maximise the squared-distance.

ℓ2 = (x ´ 1)2 + y2.

• Since (x, y) lies on the ellipse we have

x2

4
+ y2 = 1

Note that this also shows that ´2 ď x ď 2 and ´1 ď y ď 1.

Isolating y2 and substituting this into our expression for ℓ2 gives

ℓ2 = (x ´ 1)2 + 1 ´ x2/4
looomooon

=y2

.

• Now we can apply Corollary 3.5.13. The endpoints of the domain give

ℓ2(´2) = (´2 ´ 1)2 + 1 ´ (´2)2/4 = 32 + 1 ´ 1 = 9

ℓ2(2) = (2 ´ 1)2 + 1 ´ 22/4 = 1 + 1 ´ 1 = 1

The derivative is

d
dx

ℓ2 = 2(x ´ 1) ´ x/2 =
3x
2

´ 2

Thus there are no singular points, but there is a critical point at x = 4/3. The corre-
sponding squared-distance is

ℓ2(4/3) =
(

4
3

´ 1
)2

+ 1 ´
(4/3)2

4
= (1/3)2 + 1 ´ (4/9) = 6/9 = 2/3.

• To summarise (and giving distances and coordinates of points):
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x (x, y) ℓ

´2 (´2, 0) 3

4/3
(

4/3, ˘
?

5/3
) ?

2/3

2 (2, 0) 1

The point of maximum distance is (´2, 0), and the point of minimum distance is(
4/3, ˘

?
5/3
)
.

Example 3.5.21

Example 3.5.22

Find the dimensions of the rectangle of largest area that can be inscribed in an equilateral
triangle of side a if one side of the rectangle lies on the base of the triangle.

Solution. Since the rectangle must sit inside the triangle, its dimensions are bounded and
we will end up using Corollary 3.5.13.

• Carefully draw a picture:

a
2

π/3

a√
3a
2

(x, y)(−x, y)

(a/2, 0)(−a/2, 0)

(0,
√
3a/2)

We have drawn (on the left) the triangle in the xy-plane with its base on the x-axis.
The base has been drawn running from (´a/2, 0) to (a/2, 0) so its centre lies at the
origin. A little Pythagoras (or a little trigonometry) tells us that the height of the
triangle is

b

a2 ´ (a/2)2 =

?
3

2
¨ a = a ¨ sin

π

3

Thus the vertex at the top of the triangle lies at
(

0,
?

3
2 ¨ a

)
.

• If we construct a rectangle that does not touch the sides of the triangle, then we can
increase the dimensions of the rectangle until it touches the triangle and so make its
area larger. Thus we can assume that the two top corners of the rectangle touch the
triangle as drawn in the right-hand figure above.
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• Now let the rectangle be 2x wide and y high. And let A denote its area. Clearly

A = 2xy.

where 0 ď x ď a/2 and 0 ď y ď

?
3

2 a.

• Our construction means that the top-right corner of the rectangle will have coordi-
nates (x, y) and lie on the line joining the top vertex of the triangle at (0,

?
3a/2) to

the bottom-right vertex at (a/2, 0). In order to write the area as a function of x alone,
we need the equation for this line since it will tell us how to write y as a function of
x. The line has slope

slope =

?
3a/2 ´ 0
0 ´ a/2

= ´
?

3.

and passes through the point (0,
?

3a/2), so any point (x, y) on that line satisfies:

y = ´
?

3x +

?
3

2
a.

• We can now write the area as a function of x alone

A(x) = 2x
(

´
?

3x +

?
3

2
a
)

=
?

3x(a ´ 2x).

with 0 ď x ď a/2.

• The ends of the domain give:

A(0) = 0 A(a/2) = 0.

The derivative is

A1(x) =
?

3 (x ¨ (´2) + 1 ¨ (a ´ 2x)) =
?

3(a ´ 4x).

Since this is a polynomial there are no singular points, but there is a critical point at
x = a/4. There

A(a/4) =
?

3 ¨
a
4

¨ (a ´ a/2) =
?

3 ¨
a2

8
.

y = ´
?

3 ¨ (a/4) +
?

3
2

a =
?

3 ¨
a
4

.

• Checking the question again, we see that we are asked for the dimensions rather
than the area, so the answer is 2x ˆ y:

The largest such rectangle has dimensions a
2 ˆ

?
3a
4 .
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Example 3.5.22

This next one is a good physics example. In it we will derive Snell’s Law59 from Fer-
mat’s principle60.

Example 3.5.23

Consider the figure below which shows the trajectory of a ray of light as it passes through
two different mediums (say air and water).

P

Q

O

θi

θr

θi

θr

Let ca be the speed of light in air and cw be the speed of light in water. Fermat’s principle
states that a ray of light will always travel along a path that minimises the time taken. So
if a ray of light travels from P (in air) to Q (in water) then it will “choose” the point O (on
the interface) so as to minimise the total time taken. Use this idea to show Snell’s law,

sin θi

sin θr
=

ca

cw

where θi is the angle of incidence and θr is the angle of refraction (as illustrated in the
figure above).

Solution. This problem is a little more abstract than the others we have examined, but we
can still apply Theorem 3.5.17.

• We are given a figure in the statement of the problem and it contains all the relevant
points and angles. However it will simplify things if we decide on a coordinate sys-
tem. Let’s assume that the point O lies on the x-axis, at coordinates (x, 0). The point
P then lies above the axis at (XP,+YP), while Q lies below the axis at (XQ, ´YQ).
This is drawn below.

59 Snell’s law is named after the Dutch astronomer Willebrord Snellius who derived it in around 1621,
though it was first stated accurately in 984 by Ibn Sahl.

60 Named after Pierre de Fermat who described it in a letter in 1662. The beginnings of the idea, however,
go back as far as Hero of Alexandria in around 60CE. Hero is credited with many inventions including
the first vending machine, and a precursor of the steam engine called an aeolipile.
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(XP ,+YP )

(XP , 0)

(XQ,−YQ)

(XQ, 0)
(x, 0)

θi

θr

θi

θr

• The statement of Snell’s law contains terms sin θi and sin θr, so it is a good idea for
us to see how to express these in terms of the coordinates we have just introduced:

sin θi =
opposite

hypotenuse
=

(x ´ XP)
b

(XP ´ x)2 + Y2
P

sin θr =
opposite

hypotenuse
=

(XQ ´ x)
b

(XQ ´ x)2 + Y2
Q

• Let ℓP denote the distance PO, and ℓQ denote the distance OQ. Then we have

ℓP =
b

(XP ´ x)2 + Y2
P

ℓQ =
b

(XQ ´ x)2 + Y2
Q

If we then denote the total time taken by T, then

T =
ℓP

ca
+

ℓQ

cw
=

1
ca

b

(XP ´ x)2 + Y2
P +

1
cw

b

(XQ ´ x)2 + Y2
Q

which is written as a function of x since all the other terms are constants.

• Notice that as x Ñ +8 or x Ñ ´8 the total time T Ñ 8 and so we can apply
Theorem 3.5.17. The derivative is

dT
dx

=
1
ca

´2(XP ´ x)

2
b

(XP ´ x)2 + Y2
P

+
1

cw

´2(XQ ´ x)

2
b

(XQ ´ x)2 + Y2
Q

Notice that the terms inside the square-roots cannot be zero or negative since they
are both sums of squares and YP, YQ ą 0. So there are no singular points, but there
is a critical point when T1(x) = 0, namely when

0 =
1
ca

XP ´ x
b

(XP ´ x)2 + Y2
P

+
1

cw

XQ ´ x
b

(XQ ´ x)2 + Y2
Q

=
´ sin θi

ca
+

sin θr

cw
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Rearrange this to get

sin θi

ca
=

sin θr

cw
move sines to one side

sin θi

sin θr
=

ca

cw

which is exactly Snell’s law.

Example 3.5.23

Example 3.5.24

The Statue of Liberty has height 46m and stands on a 47m tall pedestal. How far from the
statue should an observer stand to maximize the angle subtended by the statue at the
observer’s eye, which is 1.5m above the base of the pedestal?

Solution. Obviously if we stand too close then all the observer sees is the pedestal, while
if they stand too far then everything is tiny. The best spot for taking a photograph is
somewhere in between.

• Draw a careful picture61

and we can put in the relevant lengths and angles.

• The height of the statue is h = 46m, and the height of the pedestal (above the eye) is
p = 47 ´ 1.5 = 45.5m. The horizontal distance from the statue to the eye is x. There
are two relevant angles. First θ is the angle subtended by the statue, while φ is the
angle subtended by the portion of the pedestal above the eye.

61 And make some healthy use of public domain clip art.
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• Some trigonometry gives us

tan φ =
p
x

tan(φ + θ) =
p + h

x

Thus

φ = arctan
p
x

φ + θ = arctan
p + h

x

and so

θ = arctan
p + h

x
´ arctan

p
x

.

• If we allow the viewer to stand at any point in front of the statue, then 0 ď x ă 8.
Further observe that as x Ñ 8 or x Ñ 0 the angle θ Ñ 0, since

lim
xÑ8

arctan
p + h

x
= lim

xÑ8
arctan

p
x
= 0

and

lim
xÑ0+

arctan
p + h

x
= lim

xÑ0+
arctan

p
x
=

π

2

Clearly the largest value of θ will be strictly positive and so has to be taken for some
0 ă x ă 8. (Note the strict inequalities.) This x will be a local maximum as well as
a global maximum. As θ is not singular at any 0 ă x ă 8, we need only search for
critical points. A careful application of the chain rule shows that the derivative is

dθ

dx
=

1

1 + ( p+h
x )2

¨

(
´(p + h)

x2

)
´

1
1 + ( p

x )
2

¨

(
´p
x2

)

=
´(p + h)

x2 + (p + h)2 +
p

x2 + p2

So a critical point occurs when

(p + h)
x2 + (p + h)2 =

p
x2 + p2 cross multiply

(p + h)(x2 + p2) = p(x2 + (p + h)2) collect x terms

x2(p + h ´ p) = p(p + h)2
´ p2(p + h) clean up

hx2 = p(p + h)(p + h ´ p) = ph(p + h) cancel common factors

x2 = p(p + h)

x = ˘

b

p(p + h) « ˘64.9m
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• Thus the best place to stand approximately 64.9m in front or behind the statue. At
that point θ « 0.348 radians or 19.9˝.

Example 3.5.24

Example 3.5.25

Find the length of the longest rod that can be carried horizontally (no tilting allowed) from
a corridor 3m wide into a corridor 2m wide. The two corridors are perpendicular to each
other.

Solution.

• Suppose that we are carrying the rod around the corner, then if the rod is as long as
possible it must touch the corner and the outside walls of both corridors. A picture
of this is show below.

You can see that this gives rise to two similar triangles, one inside each corridor.
Also the maximum length of the rod changes with the angle it makes with the walls
of the corridor.

• Suppose that the angle between the rod and the inner wall of the 3m corridor is θ,
as illustrated in the figure above. At the same time it will make an angle of π

2 ´ θ
with the outer wall of the 3m corridor. Denote by ℓ1(θ) the length of the part of
the rod forming the hypotenuse of the upper triangle in the figure above. Similarly,
denote by ℓ2(θ) the length of the part of the rod forming the hypotenuse of the lower
triangle in the figure above. Then

ℓ1(θ) =
3

sin θ
ℓ2(θ) =

2
cos θ

and the total length is

ℓ(θ) = ℓ1(θ) + ℓ2(θ) =
3

sin θ
+

2
cos θ

where 0 ď θ ď π
2 .
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• The length of the longest rod we can move through the corridor in this way is the
minimum of ℓ(θ). Notice that ℓ(θ) is not defined at θ = 0, π

2 . Indeed we find that
as θ Ñ 0+ or θ Ñ π

2
´, the length ℓ Ñ +8. (You should be able to picture what

happens to our rod in those two limits). Clearly the minimum allowed ℓ(θ) is going
to be finite and will be achieved for some 0 ă θ ă π

2 (note the strict inequalities) and
so will be a local minimum as well as a global minimum. So we only need to find
zeroes of ℓ1(θ). Differentiating ℓ gives

dℓ
dθ

= ´
3 cos θ

sin2 θ
+

2 sin θ

cos2 θ
=

´3 cos3 θ + 2 sin3 θ

sin2 θ cos2 θ
.

This does not exist at θ = 0, π
2 (which we have already analysed) but does exist at

every 0 ă θ ă π
2 and is equal to zero when the numerator is zero. Namely when

2 sin3 θ = 3 cos3 θ divide by cos3 θ

2 tan3 θ = 3

tan θ =
3

c

3
2

• From this we can recover sinθ and cosθ, without having to compute θ itself. We can,
for example, construct a right-angle triangle with adjacent length 3

?
2 and opposite

length 3
?

3 (so that tan θ = 3
?

3/2):

θ
3
√
2

3
√
3

√
22/3 + 32/3

It has hypotenuse
a

32/3 + 22/3, and so

sin θ =
31/3

a

32/3 + 22/3

cos θ =
21/3

a

32/3 + 22/3

Alternatively could use the identities:

1 + tan2 θ = sec2 θ 1 + cot2 θ = csc2 θ

to obtain expressions for 1/ cos θ and 1/ sin θ.
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• Using the above expressions for sin θ, cos θ we find the minimum of ℓ (which is the
longest rod that we can move):

ℓ =
3

sin θ
+

2
cos θ

=
3
3?3?

22/3+32/3

+
2
3?2?

22/3+32/3

=
a

22/3 + 32/3
[
32/3 + 22/3

]

=
[
22/3 + 32/3

]3/2
« 7.02m

Example 3.5.25

3.6 Ĳ Sketching Graphs

One of the most obvious applications of derivatives is to help us understand the shape
of the graph of a function. In this section we will use our accumulated knowledge of
derivatives to identify the most important qualitative features of graphs y = f (x). The
goal of this section is to highlight features of the graph y = f (x) that are easily

• determined from f (x) itself, and

• deduced from f 1(x), and

• read from f 2(x).

We will then use the ideas to sketch several examples.

3.6.1 §§ Domain, Intercepts and Asymptotes

Given a function f (x), there are several important features that we can determine from
that expression before examining its derivatives.

• The domain of the function — take note of values where f does not exist. If the
function is rational, look for where the denominator is zero. Similarly be careful to
look for roots of negative numbers or other possible sources of discontinuities.

• Intercepts — examine where the function crosses the x-axis and the y-axis by solving
f (x) = 0 and computing f (0).

• Vertical asymptotes — look for values of x at which f (x) blows up. If f (x) ap-
proaches either +8 or ´8 as x approaches a (or possibly as x approaches a from
one side) then x = a is a vertical asymptote to y = f (x). When f (x) is a rational
function (written so that common factors are cancelled), then y = f (x) has vertical
asymptotes at the zeroes of the denominator.

• Horizontal asymptotes — examine the limits of f (x) as x Ñ +8 and x Ñ ´8. Often
f (x) will tend to +8 or to ´8 or to a finite limit L. If, for example, lim

xÑ+8
f (x) = L,

then y = L is a horizontal asymptote to y = f (x) as x Ñ 8.
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Example 3.6.1

Consider the function

f (x) =
x + 1

(x + 3)(x ´ 2)

• We see that it is defined on all real numbers except x = ´3,+2.

• Since f (0) = ´1/6 and f (x) = 0 only when x = ´1, the graph has y-intercept
(0, ´1/6) and x-intercept (´1, 0).

• Since the function is rational and its denominator is zero at x = ´3,+2 it will have
vertical asymptotes at x = ´3,+2. To determine the shape around those asymptotes
we need to examine the limits

lim
xÑ´3

f (x) lim
xÑ2

f (x)

Notice that when x is close to ´3, the factors (x + 1) and (x ´ 2) are both negative,
so the sign of f (x) = x+1

x´2 ¨ 1
x+3 is the same as the sign of x + 3. Hence

lim
xÑ´3+

f (x) = +8 lim
xÑ´3´

f (x) = ´8

A similar analysis when x is near 2 gives

lim
xÑ2+

f (x) = +8 lim
xÑ2´

f (x) = ´8

• Finally since the numerator has degree 1 and the denominator has degree 2, we see
that as x Ñ ˘8, f (x) Ñ 0. So y = 0 is a horizontal asymptote.

• Since we know the behaviour around the asymptotes and we know the locations of
the intercepts (as shown in the left graph below), we can then join up the pieces and
smooth them out to get the a good sketch of this function (below right).

Example 3.6.1
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3.6.2 §§ First Derivative — Increasing or Decreasing

Now we move on to the first derivative, f 1(x). This is a good time to revisit the mean-
value theorem (Theorem 2.13.4) and some of its consequences (Corollary 2.13.11). There
we considered any function f (x) that is continuous on an interval A ď x ď B and is
differentiable on A ă x ă B. Then

• if f 1(x) ą 0 for all A ă x ă B, then f (x) is increasing on [A, B]
— that is, for all A ď a ă b ď B, f (a) ă f (b).

• if f 1(x) ă 0 for all A ă x ă B, then f (x) is decreasing on [A, B]
— that is, for all A ď a ă b ď B, f (a) ą f (b).

Thus the sign of the derivative indicates to us whether the function is increasing or de-
creasing. Further, as we discussed in Section 3.5.1, we should also examine points at
which the derivative is zero — critical points — and points where the derivative does not
exist. These points may indicate a local maximum or minimum.

We will now consider a function f (x) that is defined on an interval I, except possibly at
finitely many points of I. If f or its derivative f 1 is not defined at a point a of I, then we
call a a singular point62 of f .

After studying the function f (x) as described above, we should compute its derivative
f 1(x).

• Critical points — determine where f 1(x) = 0. At a critical point, f has a horizontal
tangent.

• Singular points — determine where f 1(x) is not defined. If f 1(x) approaches ˘8 as x
approaches a singular point a, then f has a vertical tangent there when f approaches
a finite value as x approaches a (or possibly approaches a from one side) and a verti-
cal asymptote when f (x) approaches ˘8 as x approaches a (or possibly approaches
a from one side).

• Increasing and decreasing — where is the derivative positive and where is it neg-
ative. Notice that in order for the derivative to change sign, it must either pass
through zero (a critical point) or have a singular point. Thus neighbouring regions
of increase and decrease will be separated by critical and singular points.

Example 3.6.2

Consider the function

f (x) = x4
´ 6x3

• Before we move on to derivatives, let us first examine the function itself as we did
above.

– As f (x) is a polynomial its domain is all real numbers.

62 This is the extension of the definition of “singular point” that was mentioned in the footnote in Defini-
tion 3.5.6.
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– Its y-intercept is at (0, 0). We find its x-intercepts by factoring

f (x) = x4
´ 6x3 = x3(x ´ 6)

So it crosses the x-axis at x = 0, 6.

– Again, since the function is a polynomial it does not have any vertical asymp-
totes. And since

lim
xÑ˘8

f (x) = lim
xÑ˘8

x4(1 ´ 6/x) = +8

it does not have horizontal asymptotes — it blows up to +8 as x goes to ˘8.

– We can also determine where the function is positive or negative since we know
it is continuous everywhere and zero at x = 0, 6. Thus we must examine the
intervals

(´8, 0) (0, 6) (6, 8)

When x ă 0, x3 ă 0 and x ´ 6 ă 0 so f (x) = x3(x ´ 6) = (negative)(negative) ą

0. Similarly when x ą 6, x3 ą 0, x ´ 6 ą 0 we must have f (x) ą 0. Finally when
0 ă x ă 6, x3 ą 0 but x ´ 6 ă 0 so f (x) ă 0. Thus

interval (´8, 0) 0 (0, 6) 6 (6, 8)
f (x) positive 0 negative 0 positive

– Based on this information we can already construct a rough sketch.

• Now we compute its derivative

f 1(x) = 4x3
´ 18x2 = 2x2(2x ´ 9)

• Since the function is a polynomial, it does not have any singular points, but it does
have two critical points at x = 0, 9/2. These two critical points split the real line into
3 open intervals

(´8, 0) (0, 9/2) (9/2, 8)

We need to determine the sign of the derivative in each intervals.
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– When x ă 0, x2 ą 0 but (2x ´ 9) ă 0, so f 1(x) ă 0 and the function is decreasing.

– When 0 ă x ă 9/2, x2 ą 0 but (2x ´ 9) ă 0, so f 1(x) ă 0 and the function is still
decreasing.

– When x ą 9/2, x2 ą 0 and (2x ´ 9) ą 0, so f 1(x) ą 0 and the function is
increasing.

We can then summarise this in the following table

interval (´8, 0) 0 (0, 9/2) 9/2 (9/2, 8)
f 1(x) negative 0 negative 0 positive

decreasing
horizontal

tangent decreasing minimum increasing

Since the derivative changes sign from negative to positive at the critical point x =
9/2, this point is a minimum. Its y-value is

y = f (9/2) =
93

23

(
9
2

´ 6
)

=
36

23 ¨

(
´3
2

)
= ´

37

24

On the other hand, at x = 0 the derivative does not change sign; while this point has
a horizontal tangent line it is not a minimum or maximum.

• Putting this information together we arrive at a quite reasonable sketch.

To improve upon this further we will examine the second derivative.

Example 3.6.2
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3.6.3 §§ Second Derivative — Concavity

The second derivative f 2(x) tells us the rate at which the derivative changes. Perhaps the
easiest way to understand how to interpret the sign of the second derivative is to think
about what it implies about the slope of the tangent line to the graph of the function.
Consider the following sketches of y = 1 + x2 and y = ´1 ´ x2.

• In the case of y = f (x) = 1 + x2 , f 2(x) = 2 ą 0. Notice that this means the slope,
f 1(x), of the line tangent to the graph at x increases as x increases. Looking at the
figure on the left above, we see that the graph always lies above the tangent lines.

• For y = f (x) = ´1 ´ x2 , f 2(x) = ´2 ă 0. The slope, f 1(x), of the line tangent to the
graph at x decreases as x increases. Looking at the figure on the right above, we see
that the graph always lies below the tangent lines.

Similarly consider the following sketches of y = x´1/2 and y =
?

4 ´ x:

Both of their derivatives, ´1
2 x´3/2 and ´1

2(4 ´ x)´1/2, are negative, so they are decreasing
functions. Examining second derivatives shows some differences.

• For the first function, y2(x) = 3
4 x´5/2 ą 0, so the slopes of tangent lines are increas-

ing with x and the graph lies above its tangent lines.
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• However, the second function has y2(x) = ´1
4(4 ´ x)´3/2 ă 0 so the slopes of the

tangent lines are decreasing with x and the graph lies below its tangent lines.

More generally

Let f (x) be a continuous function on the interval [a, b] and suppose its first and
second derivatives exist on that interval.

• If f 2(x) ą 0 for all a ă x ă b, then the graph of f lies above its tangent lines
for a ă x ă b and it is said to be concave up.

• If f 2(x) ă 0 for all a ă x ă b, then the graph of f lies below its tangent lines
for a ă x ă b and it is said to be concave down.

• If f 2(c) = 0 for some a ă c ă b, and the concavity of f changes across x = c,
then we call (c, f (c)) an inflection point.

(c,f(c))

concave
up

concave
down

inflection
point

Definition 3.6.3.

Note that one might also see the terms

• “convex” or “convex up” used in place of “concave up”, and

• “concave” or “convex down” used to mean “concave down”.
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To avoid confusion we recommend the reader stick with the terms “concave up” and
“concave down”.

Let’s now continue Example 3.6.2 by discussing the concavity of the curve.

Example 3.6.4 (Continuation of Example 3.6.2)

Consider again the function

f (x) = x4
´ 6x3

• Its first derivative is f 1(x) = 4x3 ´ 18x2, so

f 2(x) = 12x2
´ 36x = 12x(x ´ 3)

• Thus the second derivative is zero (and potentially changes sign) at x = 0, 3. Thus
we should consider the sign of the second derivative on the following intervals

(´8, 0) (0, 3) (3, 8)

A little algebra gives us

interval (´8, 0) 0 (0, 3) 3 (3, 8)
f 2(x) positive 0 negative 0 positive

concavity up inflection down inflection up

Since the concavity changes at both x = 0 and x = 3, the following are inflection
points

(0, 0) (3, 34
´ 6 ˆ 33) = (3, ´34)

• Putting this together with the information we obtained earlier gives us the following
sketch
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Example 3.6.4

Example 3.6.5
(
Optional — y = x1/3 and y = x2/3)

In our Definition 3.6.3, concerning concavity and inflection points, we considered only
functions having first and second derivatives on the entire interval of interest. In this
example, we will consider the functions

f (x) = x1/3 g(x) = x2/3

We shall see that x = 0 is a singular point for both of those functions. There is no universal
agreement as to precisely when a singular point should also be called an inflection point.
We choose to extend our definition of inflection point in Definition 3.6.3 as follows. If

• the function f (x) is defined and continuous on an interval a ă x ă b and if

• the first and second derivatives f 1(x) and f 2(x) exist on a ă x ă b except possibly at
the single point a ă c ă b and if

• f is concave up on one side of c and is concave down on the other side of c

then we say that
(
c , f (c)

)
is an inflection point of y = f (x). Now let’s check out y = f (x)

and y = g(x) from this point of view.

(1) Features of y = f (x) and y = g(x) that are read off of f (x) and g(x):

• Since f (0) = 01/3 = 0 and g(0) = 02/3 = 0, the origin (0, 0) lies on both y = f (x)
and y = g(x).

• For example, 13 = 1 and (´1)3 = ´1 so that the cube root of 1 is 11/3 = 1 and the
cube root of ´1 is (´1)1/3 = ´1. In general,

x1/3

$

’

&

’

%

ă 0 if x ă 0
= 0 if x = 0
ą 0 if x ą 0

Consequently the graph y = f (x) = x1/3 lies below the x-axis when x ă 0 and
lies above the x-axis when x ą 0. On the other hand, the graph y = g(x) =

x2/3 =
[
x1/3]2 lies on or above the x-axis for all x.

• As x Ñ +8, both y = f (x) = x1/3 and y = g(x) = x2/3 tend to +8.

• As x Ñ ´8, y = f (x) = x1/3 tends to ´8 and y = g(x) = x2/3 tends to +8.

(2) Features of y = f (x) and y = g(x) that are read off of f 1(x) and g1(x):

f 1(x) =

#

1
3 x´2/3 if x ‰ 0
undefined if x = 0

+

ùñ f 1(x) ą 0 for all x ‰ 0

g1(x) =

#

2
3 x´1/3 if x ‰ 0
undefined if x = 0

+

ùñ g1(x)

#

ă 0 if x ă 0
ą 0 if x ą 0
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So the graph y = f (x) is increasing on both sides of the singular point x = 0, while
the graph y = g(x) is decreasing to the left of x = 0 and is increasing to the right of
x = 0. As x Ñ 0, f 1(x) and g1(x) become infinite. That is, the slopes of the tangent
lines at

(
x, f (x)

)
and

(
x, g(x)

)
become infinite and the tangent lines become vertical.

(3) Features of y = f (x) and y = g(x) that are read off of f 2(x) and g2(x):

f 2(x) =

#

´2
9 x´5/3 = ´2

9

[
x´1/3]

5
if x ‰ 0

undefined if x = 0

+

ùñ f 2(x)

#

ą 0 if x ă 0
ă 0 if x ą 0

g2(x) =

#

´2
9 x´4/3 = ´2

9

[
x´1/3]

4
if x ‰ 0

undefined if x = 0

+

ùñ g2(x) ă 0 for all x ‰ 0

So the graph y = g(x) is concave down on both sides of the singular point x = 0,
while the graph y = f (x) is concave up to the left of x = 0 and is concave down to the
right of x = 0.

By way of summary, we have, for f (x),

interval (´8, 0) 0 (0, 8)
f (x) negative 0 positive
f 1(x) positive undefined positive

increasing increasing
f 2(x) positive undefined negative

concave up inflection concave down

and for g(x),

interval (´8, 0) 0 (0, 8)
g(x) positive 0 positive
g1(x) negative undefined positive

decreasing increasing
g2(x) negative undefined negative

concave down concave down

Since the concavity changes at x = 0 for y = f (x), but not for y = g(x), (0, 0) is an
inflection point for y = f (x), but not for y = g(x). We have the following sketch for
y = f (x) = x1/3,

(0, 0)

inflection point

x

y

y = f(x) = x1/3

f ′>0, f increasing

f ′′<0, f concave down

f ′>0, f increasing

f ′′>0, f concave up
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and the following sketch for y = g(x) = x2/3.

(0, 0) x

y

y = g(x) = x2/3

g′>0, g increasing

g′′<0, g concave down

g′<0, g decreasing

g′′<0, g concave down

Note that the curve y = f (x) = x1/3 looks perfectly smooth, even though f 1(x) Ñ 8 as
x Ñ 0. There is no kink or discontinuity at (0, 0). The singularity at x = 0 has caused the
y-axis to be a vertical tangent to the curve, but has not prevented the curve from looking
smooth.

Example 3.6.5

3.6.4 §§ Symmetries

Before we proceed to some examples, we should examine some simple symmetries pos-
sessed by some functions. We’ll look at three symmetries — evenness, oddness and peri-
odicity. If a function possesses one of these symmetries then it can be exploited to reduce
the amount of work required to sketch the graph of the function.

Let us start with even and odd functions.

A function f (x) is said to be even if f (´x) = f (x) for all x.

Definition 3.6.6.

A function f (x) is said to be odd if f (´x) = ´ f (x) for all x.

Definition 3.6.7.

Example 3.6.8

Let f (x) = x2 and g(x) = x3. Then

f (´x) = (´x)2 = x2 = f (x)

g(´x) = (´x)3 = ´x3 = ´g(x)

Hence f (x) is even and g(x) is odd.
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Notice any polynomial involving only even powers of x will be even

f (x) = 7x6 + 2x4
´ 3x2 + 5 remember that 5 = 5x0

f (´x) = 7(´x)6 + 2(´x)4
´ 3(´x)2 + 5

= 7x6 + 2x4
´ 3x2 + 5 = f (x)

Similarly any polynomial involving only odd powers of x will be odd

g(x) = 2x5
´ 8x3

´ 3x

g(´x) = 2(´x)5
´ 8(´x)3

´ 3(´x)

= ´2x5 + 8x3 + 3x = ´g(x)

Example 3.6.8

Not all even and odd functions are polynomials. For example

|x| cos x and (ex + e´x)

are all even, while

sin x tan x and (ex
´ e´x)

are all odd. Indeed, given any function f (x), the function

g(x) = f (x) + f (´x) will be even, and
h(x) = f (x) ´ f (´x) will be odd.

Now let us see how we can make use of these symmetries to make graph sketching
easier. Let f (x) be an even function. Then

the point (x0, y0) lies on the graph of y = f (x)

if and only if y0 = f (x0) = f (´x0) which is the case if and only if

the point (´x0, y0) lies on the graph of y = f (x).

x0−x0

y0 (x0, y0)(−x0, y0)

Notice that the points (x0, y0) and (´x0, y0) are just reflections of each other across the
y-axis. Consequently, to draw the graph y = f (x), it suffices to draw the part of the graph
with x ě 0 and then reflect it in the y–axis. Here is an example. The part with x ě 0 is on
the left and the full graph is on the right.
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x

y
(x0, y0)

x

y
(x0, y0)(−x0, y0)

Very similarly, when f (x) is an odd function then

(x0, y0) lies on the graph of y = f (x)

if and only if

(´x0, ´y0) lies on the graph of y = f (x)

x0−x0

y0

−y0

(x0, y0)(−x0, y0)

(−x0,−y0)

Now the symmetry is a little harder to interpret pictorially. To get from (x0, y0) to (´x0, ´y0)
one can first reflect (x0, y0) in the y–axis to get to (´x0, y0) and then reflect the result in
the x–axis to get to (´x0, ´y0). Consequently, to draw the graph y = f (x), it suffices to
draw the part of the graph with x ě 0 and then reflect it first in the y–axis and then in the
x–axis. Here is an example. First, here is the part of the graph with x ě 0.

x

y

(x0, y0)

Next, as an intermediate step (usually done in our heads rather than on paper), we add in
the reflection in the y–axis.
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x

y

(x0, y0)(−x0, y0)

Finally to get the full graph, we reflect the dashed line in the x–axis

x

y

(x0, y0)(−x0, y0)

(−x0,−y0)

and then remove the dashed line.

x

y

(x0, y0)

(−x0,−y0)

Let’s do a more substantial example of an even function

Example 3.6.9

Consider the function

g(x) =
x2 ´ 9
x2 + 3
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• The function is even since

g(´x) =
(´x)2 ´ 9
(´x)2 + 3

=
x2 ´ 9
x2 + 3

= g(x)

Thus it suffices to study the function for x ě 0 because we can then use the even
symmetry to understand what happens for x ă 0.

• The function is defined on all real numbers since its denominator x2 + 3 is never
zero. Hence it has no vertical asymptotes.

• The y-intercept is g(0) = ´9
3 = ´3. And x-intercepts are given by the solution

of x2 ´ 9 = 0, namely x = ˘3. Note that we only need to establish x = 3 as an
intercept. Then since g is even, we know that x = ´3 is also an intercept.

• To find the horizontal asymptotes we compute the limit as x Ñ +8

lim
xÑ8

g(x) = lim
xÑ8

x2 ´ 9
x2 + 3

= lim
xÑ8

x2(1 ´ 9/x2)

x2(1 + 3/x2)

= lim
xÑ8

1 ´ 9/x2

1 + 3/x2 = 1

Thus y = 1 is a horizontal asymptote. Indeed, this is also the asymptote as x Ñ ´8

since by the even symmetry

lim
xÑ´8

g(x) = lim
xÑ8

g(´x) = lim
xÑ8

g(x).

• We can already produce a quite reasonable sketch just by putting in the horizontal
asymptote and the intercepts and drawing a smooth curve between them.

Note that we have drawn the function as never crossing the asymptote y = 1, how-
ever we have not yet proved that. We could by trying to solve g(x) = 1.

x2 ´ 9
x2 + 3

= 1

x2
´ 9 = x2 + 3

´9 = 3 so no solutions.
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Alternatively we could analyse the first derivative to see how the function approaches
the asymptote.

• Now we turn to the first derivative:

g1(x) =
(x2 + 3)(2x) ´ (x2 ´ 9)(2x)

(x2 + 3)2

=
24x

(x2 + 3)2

There are no singular points since the denominator is nowhere zero. The only critical
point is at x = 0. Thus we must find the sign of g1(x) on the intervals

(´8, 0) (0, 8)

• When x ą 0, 24x ą 0 and (x2 + 3) ą 0, so g1(x) ą 0 and the function is increasing. By
even symmetry we know that when x ă 0 the function must be decreasing. Hence
the critical point x = 0 is a local minimum of the function.

• Notice that since the function is increasing for x ą 0 and the function must approach
the horizontal asymptote y = 1 from below. Thus the sketch above is quite accurate.

• Now consider the second derivative:

g2(x) =
d
dx

24x
(x2 + 3)2

=
(x2 + 3)2 ¨ 24 ´ 24x ¨ 2(x2 + 3) ¨ 2x

(x2 + 3)4 cancel a factor of (x2 + 3)

=
(x2 + 3) ¨ 24 ´ 96x2

(x2 + 3)3

=
72(1 ´ x2)

(x2 + 3)3

• It is clear that g2(x) = 0 when x = ˘1. Note that, again, we can infer the zero at
x = ´1 from the zero at x = 1 by the even symmetry. Thus we need to examine the
sign of g2(x) the intervals

(´8, ´1) (´1, 1) (1, 8)

• When |x| ă 1 we have (1 ´ x2) ą 0 so that g2(x) ą 0 and the function is concave
up. When |x| ą 1 we have (1 ´ x2) ă 0 so that g2(x) ă 0 and the function is
concave down. Thus the points x = ˘1 are inflection points. Their coordinates are
(˘1, g(˘1)) = (˘1, ´2).

• Putting this together gives the following sketch:
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Example 3.6.9

Another symmetry we should consider is periodicity.

A function f (x) is said to be periodic, with period P ą 0, if f (x + P) = f (x) for
all x.

Definition 3.6.10.

Note that if f (x + P) = f (x) for all x, then replacing x by x + P, we have

f (x + 2P) = f (x + P + P) = f (x + P) = f (x).

More generally f (x + kP) = f (x) for all integers k. Thus if f has period P, then it also
has period nP for all natural numbers n. The smallest period is called the fundamental
period.

Example 3.6.11

The classic example of a periodic function is f (x) = sin x, which has period 2π since
f (x + 2π) = sin(x + 2π) = sin x = f (x).

Example 3.6.11

If f (x) has period P then

(x0, y0) lies on the graph of y = f (x)

if and only if y0 = f (x0) = f (x0 + P) which is the case if and only if

(x0 + P, y0) lies on the graph of y = f (x)

and, more generally,

(x0, y0) lies on the graph of y = f (x)

if and only if

(x0 + nP, y0) lies on the graph of y = f (x)
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for all integers n.
Note that the point (x0 + P, y0) can be obtained by translating (x0, y0) horizontally

by P. Similarly the point (x0 + nP, y0) can be found by repeatedly translating (x0, y0)
horizontally by P.

x0 x0 + P x0 + 2Px0 − P

y0
(x0,y0)(x0−P,y0) (x0+P,y0) (x0+2P,y0)

Consequently, to draw the graph y = f (x), it suffices to draw one period of the graph, say
the part with 0 ď x ď P, and then translate it repeatedly. Here is an example. Here is a
sketch of one period

x

y (x0,y0)

P

and here is the full sketch.

x

y (x0,y0)(x0−P,y0) (x0+P,y0) (x0+2P,y0)

P 2P−P

3.6.5 §§ A Checklist for Sketching

Above we have described how we can use our accumulated knowledge of derivatives to
quickly identify the most important qualitative features of graphs y = f (x). Here we give
the reader a quick checklist of things to examine in order to produce an accurate sketch
based on properties that are easily read off from f (x), f 1(x) and f 2(x).

§§§ A Sketching Checklist.

(1) Features of y = f (x) that are read off of f (x):

• First check where f (x) is defined. Then
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• y = f (x) is plotted only for x’s in the domain of f (x), i.e. where f (x) is defined.

• y = f (x) has vertical asymptotes at the points where f (x) blows up to ˘8.

• Next determine whether the function is even, odd, or periodic.

• y = f (x) is first plotted for x ě 0 if the function is even or odd. The rest of the
sketch is then created by reflections.

• y = f (x) is first plotted for a single period if the function is periodic. The rest of
the sketch is then created by translations.

• Next compute f (0), limxÑ8 f (x) and limxÑ´8 f (x) and look for solutions to
f (x) = 0 that you can easily find. Then

• y = f (x) has y–intercept
(
0, f (0)

)
.

• y = f (x) has x–intercept (a, 0) whenever f (a) = 0

• y = f (x) has horizontal asymptote y = Y if limxÑ8 f (x) = L or limxÑ´8 f (x) =
L.

(2) Features of y = f (x) that are read off of f 1(x):

• Compute f 1(x) and determine its critical points and singular points, then

• y = f (x) has a horizontal tangent at the points where f 1(x) = 0.

• y = f (x) is increasing at points where f 1(x) ą 0.

• y = f (x) is decreasing at points where f 1(x) ă 0.

• y = f (x) has vertical tangents or vertical asymptotes at the points where f 1(x) =
˘8.

(3) Features of y = f (x) that are read off of f 2(x):

• Compute f 2(x) and determine where f 2(x) = 0 or does not exist, then

• y = f (x) is concave up at points where f 2(x) ą 0.

• y = f (x) is concave down at points where f 2(x) ă 0.

• y = f (x) may or may not have inflection points where f 2(x) = 0.

3.6.6 §§ Sketching Examples

Example 3.6.12
(
Sketch f (x) = x3 ´ 3x + 1

)

(1) Reading from f (x):

• The function is a polynomial so it is defined everywhere.

• Since f (´x) = ´x3 + 3x + 1 ‰ ˘ f (x), it is not even or odd. Nor is it periodic.
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• The y-intercept is y = 1. The x-intercepts are not easily computed since it is
a cubic polynomial that does not factor nicely63. So for this example we don’t
worry about finding them.

• Since it is a polynomial it has no vertical asymptotes.

• For very large x, both positive and negative, the x3 term in f (x) dominates the
other two terms so that

f (x) Ñ

#

+8 as x Ñ +8

´8 as x Ñ ´8

and there are no horizontal asymptotes.

(2) We now compute the derivative:

f 1(x) = 3x2
´ 3 = 3(x2

´ 1) = 3(x + 1)(x ´ 1)

• The critical points (where f 1(x) = 0) are at x = ˘1. Further since the derivative
is a polynomial it is defined everywhere and there are no singular points. The
critical points split the real line into the intervals (´8, ´1), (´1, 1) and (1, 8).

• When x ă ´1, both factors (x + 1), (x ´ 1) ă 0 so f 1(x) ą 0.

• Similarly when x ą 1, both factors (x + 1), (x ´ 1) ą 0 so f 1(x) ą 0.

• When ´1 ă x ă 1, (x ´ 1) ă 0 but (x + 1) ą 0 so f 1(x) ă 0.

• Summarising all this

(´8, ´1) -1 (-1,1) 1 (1, 8)
f 1(x) positive 0 negative 0 positive

increasing maximum decreasing minimum increasing

So (´1, f (´1)) = (´1, 3) is a local maximum and (1, f (1)) = (1, ´1) is a local
minimum.

(3) Compute the second derivative:

f 2(x) = 6x

• The second derivative is zero when x = 0, and the problem is quite easy to anal-
yse. Clearly, f 2(x) ă 0 when x ă 0 and f 2(x) ą 0 when x ą 0.

• Thus f is concave down for x ă 0, concave up for x ą 0 and has an inflection
point at x = 0.

Putting this all together gives:

63 With the aid of a computer we can find the x-intercepts numerically: x « ´1.879385242, 0.3472963553,
and 1.532088886. If you are interested in more details check out Appendix C.
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(−1, 3)

(1,−1)

(0, 1)

x

y
y = x3 − 3x+ 1

f ′>0, f increasing f ′<0, f decreasing f ′>0, f increasing

f ′′>0, f convex upf ′′<0, f convex down

Example 3.6.12

Example 3.6.13
(
Sketch f (x) = x4 ´ 4x3)

(1) Reading from f (x):

• The function is a polynomial so it is defined everywhere.

• Since f (´x) = x4 + 4x3 ‰ ˘ f (x), it is not even or odd. Nor is it periodic.

• The y-intercept is y = f (0) = 0, while the x-intercepts are given by the solution
of

f (x) = x4
´ 4x3 = 0

x3(x ´ 4) = 0

Hence the x-intercepts are 0, 4.

• Since f is a polynomial it does not have any vertical asymptotes.

• For very large x, both positive and negative, the x4 term in f (x) dominates the
other term so that

f (x) Ñ

#

+8 as x Ñ +8

+8 as x Ñ ´8

and the function has no horizontal asymptotes.

(2) Now compute the derivative f 1(x):

f 1(x) = 4x3
´ 12x2 = 4(x ´ 3)x2
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• The critical points are at x = 0, 3. Since the function is a polynomial there are no
singular points. The critical points split the real line into the intervals (´8, 0),
(0, 3) and (3, 8).

• When x ă 0, x2 ą 0 and x ´ 3 ă 0, so f 1(x) ă 0.

• When 0 ă x ă 3, x2 ą 0 and x ´ 3 ă 0, so f 1(x) ă 0.

• When 3 ă x, x2 ą 0 and x ´ 3 ą 0, so f 1(x) ą 0.

• Summarising all this

(´8, 0) 0 (0,3) 3 (3, 8)
f 1(x) negative 0 negative 0 positive

decreasing
horizontal

tangent decreasing minimum increasing

So the point (3, f (3)) = (3, ´27) is a local minimum. The point (0, f (0)) = (0, 0)
is neither a minimum nor a maximum, even though f 1(0) = 0.

(3) Now examine f 2(x):

f 2(x) = 12x2
´ 24x = 12x(x ´ 2)

• So f 2(x) = 0 when x = 0, 2. This splits the real line into the intervals (´8, 0), (0, 2)
and (2, 8).

• When x ă 0, x ´ 2 ă 0 and so f 2(x) ą 0.

• When 0 ă x ă 2, x ą 0 and x ´ 2 ă 0 and so f 2(x) ă 0.

• When 2 ă x, x ą 0 and x ´ 2 ą 0 and so f 2(x) ą 0.

• Thus the function is convex up for x ă 0, then convex down for 0 ă x ă 2,
and finally convex up again for x ą 2. Hence (0, f (0)) = (0, 0) and (2, f (2)) =
(2, ´16) are inflection points.

Putting all this information together gives us the following sketch.

x

y y = x4 − 4x3

(0, 0)

(3,−27)

(2,−16)

(4, 0)

f ′<0, f decreasing f ′<0, f decreasing f ′>0, f increasing

f ′′>0, f convex up f ′′<0, convex down f ′′>0, f convex up
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Example 3.6.13

Example 3.6.14
(

f (x) = x3 ´ 6x2 + 9x ´ 54
)

(1) Reading from f (x):

• The function is a polynomial so it is defined everywhere.

• Since f (´x) = ´x3 ´ 6x2 ´ 9x ´ 54 ‰ ˘ f (x), it is not even or odd. Nor is it
periodic.

• The y-intercept is y = f (0) = ´54, while the x-intercepts are given by the solution
of

f (x) = x3
´ 6x2 + 9x ´ 54 = 0

x2(x ´ 6) + 9(x ´ 6) = 0

(x2 + 9)(x ´ 6) = 0

Hence the only x-intercept is 6.

• Since f is a polynomial it does not have any vertical asymptotes.

• For very large x, both positive and negative, the x3 term in f (x) dominates the
other term so that

f (x) Ñ

#

+8 as x Ñ +8

´8 as x Ñ ´8

and the function has no horizontal asymptotes.

(2) Now compute the derivative f 1(x):

f 1(x) = 3x2
´ 12x + 9

= 3(x2
´ 4x + 3) = 3(x ´ 3)(x ´ 1)

• The critical points are at x = 1, 3. Since the function is a polynomial there are no
singular points. The critical points split the real line into the intervals (´8, 1),
(1, 3) and (3, 8).

• When x ă 1, (x ´ 1) ă 0 and (x ´ 3) ă 0, so f 1(x) ą 0.

• When 1 ă x ă 3, (x ´ 1) ą 0 and (x ´ 3) ă 0, so f 1(x) ă 0.

• When 3 ă x, (x ´ 1) ą 0 and (x ´ 3) ą 0, so f 1(x) ą 0.

• Summarising all this

(´8, 1) 1 (1,3) 3 (3, 8)
f 1(x) positive 0 negative 0 positive

increasing maximum decreasing minimum increasing
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So the point (1, f (1)) = (1, ´50) is a local maximum. The point (3, f (3)) =
(3, ´54) is a local minimum.

(3) Now examine f 2(x):

f 2(x) = 6x ´ 12

• So f 2(x) = 0 when x = 2. This splits the real line into the intervals (´8, 2) and
(2, 8).

• When x ă 2, f 2(x) ă 0.

• When x ą 2, f 2(x) ą 0.

• Thus the function is convex down for x ă 2, then convex up for x ą 2. Hence
(2, f (2)) = (2, ´52) is an inflection point.

Putting all this information together gives us the following sketch.

x

y
y = x3 − 6x2 + 9x− 54

(0,−54)

(6, 0)

(3,−54)

(1,−50)

(2,−52)

and if we zoom in around the interesting points (minimum, maximum and inflection
point), we have

(0,−54)

(3,−54)

(1,−50)

(2,−52)

f ′>0
f increasing

f ′<0
f decreasing

f ′>0
f increasing

f ′′<0, f convex down f ′′>0, convex up
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Example 3.6.14

An example of sketching a simple rational function.

Example 3.6.15
(

f (x) =
x

x2 ´ 4

)

(1) Reading from f (x):

• The function is rational so it is defined except where its denominator is zero —
namely at x = ˘2.

• Since f (´x) =
´x

x2 ´ 4
= ´ f (x), it is odd. Indeed this means that we only need

to examine what happens to the function for x ě 0 and we can then infer what
happens for x ď 0 using f (´x) = ´ f (x). In practice we will sketch the graph for
x ě 0 and then infer the rest from this symmetry.

• The y-intercept is y = f (0) = 0, while the x-intercepts are given by the solution
of f (x) = 0. So the only x-intercept is 0.

• Since f is rational, it may have vertical asymptotes where its denominator is zero
— at x = ˘2. Since the function is odd, we only have to analyse the asymptote at
x = 2 and we can then infer what happens at x = ´2 by symmetry.

lim
xÑ2+

f (x) = lim
xÑ2+

x
(x ´ 2)(x + 2)

= +8

lim
xÑ2´

f (x) = lim
xÑ2´

x
(x ´ 2)(x + 2)

= ´8

• We now check for horizontal asymptotes:

lim
xÑ+8

f (x) = lim
xÑ+8

x
x2 ´ 4

= lim
xÑ+8

1
x ´ 4/x

= 0

(2) Now compute the derivative f 1(x):

f 1(x) =
(x2 ´ 4) ¨ 1 ´ x ¨ 2x

(x2 ´ 4)2

=
´(x2 + 4)
(x2 ´ 4)2

• Hence there are no critical points. There are singular points where the denomi-
nator is zero, namely x = ˘2. Before we proceed, notice that the numerator is
always negative and the denominator is always positive. Hence f 1(x) ă 0 except
at x = ˘2 where it is undefined.
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• The function is decreasing except at x = ˘2.

• We already know that at x = 2 we have a vertical asymptote and that f 1(x) ă 0
for all x. So

lim
xÑ2

f 1(x) = ´8

• Summarising all this

[0,2) 2 (2, 8)
f 1(x) negative DNE negative

decreasing
vertical

asymptote decreasing

Remember — we will draw the graph for x ě 0 and then use the odd symmetry
to infer the graph for x ă 0.

(3) Now examine f 2(x):

f 2(x) = ´
(x2 ´ 4)2 ¨ (2x) ´ (x2 + 4) ¨ 2 ¨ 2x ¨ (x2 ´ 4)

(x2 ´ 4)4

= ´
(x2 ´ 4) ¨ (2x) ´ (x2 + 4) ¨ 4x

(x2 ´ 4)3

= ´
2x3 ´ 8x ´ 4x3 ´ 16x

(x2 ´ 4)3

=
2x(x2 + 12)
(x2 ´ 4)3

• So f 2(x) = 0 when x = 0 and does not exist when x = ˘2. This splits the real
line into the intervals (´8, ´2), (´2, 0), (0, 2) and (2, 8). However we only need
to consider x ě 0 (because of the odd symmetry).

• When 0 ă x ă 2, x ą 0, (x2 + 12) ą 0 and (x2 ´ 4) ă 0 so f 2(x) ă 0.

• When x ą 2, x ą 0, (x2 + 12) ą 0 and (x2 ´ 4) ą 0 so f 2(x) ą 0.

Putting all this information together gives the following sketch for x ě 0:

x

y y = x
x2−4

2

f ′′<0
convex
down

f ′′>0
convex up

We can then draw in the graph for x ă 0 using f (´x) = ´ f (x):
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x

y y = x
x2−4

inflection point

2-2

f ′′<0
convex
down

f ′′>0
convex up

Notice that this means that the concavity changes at x = 0, so the point (0, f (0)) = (0, 0)
is a point of inflection (as indicated).

Example 3.6.15

This final example is more substantial since the function has singular points (points
where the derivative is undefined). The analysis is more involved.

Example 3.6.16
(

f (x) = 3
b

x2

(x´6)2

)

(1) Reading from f (x):

• First notice that we can rewrite

f (x) = 3

d

x2

(x ´ 6)2 = 3

d

x2

x2 ¨ (1 ´ 6/x)2 = 3

d

1
(1 ´ 6/x)2

• The function is the cube root of a rational function. The rational function is de-
fined except at x = 6, so the domain of f is all reals except x = 6.

• Clearly the function is not periodic, and examining

f (´x) = 3

d

1
(1 ´ 6/(´x))2

= 3

d

1
(1 + 6/x)2 ‰ ˘ f (x)

shows the function is neither even nor odd.

• To compute horizontal asymptotes we examine the limit of the portion of the
function inside the cube-root

lim
xÑ˘8

1
(1 ´ 6

x )
2
= 1

This means we have

lim
xÑ˘8

f (x) = 1
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That is, the line y = 1 will be a horizontal asymptote to the graph y = f (x) both
for x Ñ +8 and for x Ñ ´8.

• Our function f (x) Ñ +8 as x Ñ 6, because of the (1 ´ 6/x)2 in its denominator.
So y = f (x) has x = 6 as a vertical asymptote.

(2) Now compute f 1(x). Since we rewrote

f (x) = 3

d

1
(1 ´ 6/x)2 =

(
1 ´

6
x

)´2/3

we can use the chain rule

f 1(x) = ´
2
3

(
1 ´

6
x

)´5/3 6
x2

= ´4
(

x ´ 6
x

)´5/3 1
x2

= ´4
(

1
x ´ 6

)5/3 1
x1/3

• Notice that the derivative is nowhere equal to zero, so the function has no critical
points. However there are two places the derivative is undefined. The terms

(
1

x ´ 6

)5/3 1
x1/3

are undefined at x = 6, 0 respectively. Hence x = 0, 6 are singular points. These
split the real line into the intervals (´8, 0), (0, 6) and (6, 8).

• When x ă 0, (x ´ 6) ă 0, we have that (x ´ 6)´5/3 ă 0 and x´1/3 ă 0 and so
f 1(x) = ´4 ¨ (negative) ¨ (negative) ă 0.

• When 0 ă x ă 6, (x ´ 6) ă 0, we have that (x ´ 6)´5/3 ă 0 and x´1/3 ą 0 and so
f 1(x) ą 0.

• When x ą 6, (x ´ 6) ą 0, we have that (x ´ 6)´5/3 ą 0 and x´1/3 ą 0 and so
f 1(x) ă 0.

• We should also examine the behaviour of the derivative as x Ñ 0 and x Ñ 6.

lim
xÑ0´

f 1(x) = ´4
(

lim
xÑ0´

(x ´ 6)´5/3

)(
lim

xÑ0´
x´1/3

)
= ´8

lim
xÑ0+

f 1(x) = ´4
(

lim
xÑ0+

(x ´ 6)´5/3

)(
lim

xÑ0+
x´1/3

)
= +8

lim
xÑ6´

f 1(x) = ´4
(

lim
xÑ6´

(x ´ 6)´5/3

)(
lim

xÑ6´
x´1/3

)
= +8

lim
xÑ6+

f 1(x) = ´4
(

lim
xÑ6+

(x ´ 6)´5/3

)(
lim

xÑ6+
x´1/3

)
= ´8

We already know that x = 6 is a vertical asymptote of the function, so it is not
surprising that the lines tangent to the graph become vertical as we approach 6.
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The behavior around x = 0 is less standard, since the lines tangent to the graph
become vertical, but x = 0 is not a vertical asymptote of the function. Indeed the
function takes a finite value y = f (0) = 0.

• Summarising all this

(´8, 0) 0 (0,6) 6 (6, 8)
f 1(x) negative DNE positive DNE negative

decreasing
vertical
tangents increasing

vertical
asymptote decreasing

(3) Now look at f 2(x):

f 2(x) = ´4
d
dx

[(
1

x ´ 6

)5/3 1
x1/3

]
= ´4

[
´

5
3

(
1

x ´ 6

)8/3 1
x1/3

´
1
3

(
1

x ´ 6

)5/3 1
x4/3

]

=
4
3

(
1

x ´ 6

)8/3 1
x4/3

[5x + (x ´ 6)]

= 8
(

1
x ´ 6

)8/3 1
x4/3

[x ´ 1]

Oof!

• Both of the factors
(

1
x´6

)8/3

=
(

1
3?x´6

)8
and 1

x4/3 =
(

1
3?x

)4
are even powers and

so are positive (though possibly infinite). So the sign of f 2(x) is the same as the
sign of the factor x ´ 1. Thus

(´8, 1) 1 (1, 8)
f 2(x) negative 0 positive

concave down
inflection

point concave up

Here is a sketch of the graph y = f (x).

6

1

x

y

y = 3

√
x2

(x−6)2

f ′<0, f decreasing f ′>0 f ′<0, f decreasing
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It is hard to see the inflection point at x = 1, y = f (1) = 1
3?25

in the above sketch. So here
is a blow up of the part of the sketch around x = 1.

6

1

x

y

(1 , 1/ 3√25)

And if we zoom in even more we have

x

y

(1 , 1/ 3√25)

Example 3.6.16

3.7 Ĳ L’Hôpital’s Rule and Indeterminate Forms

Let us return to limits (Chapter 1) and see how we can use derivatives to simplify cer-
tain families of limits called indeterminate forms. We know, from Theorem 1.4.2 on the
arithmetic of limits, that if

lim
xÑa

f (x) = F lim
xÑa

g(x) = G

and G ‰ 0, then

lim
xÑa

f (x)
g(x)

=
F
G

The requirement that G ‰ 0 is critical — we explored this in Example 1.4.6. Please reread
that example.
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Of course64 it is not surprising that if F ‰ 0 and G = 0, then

lim
xÑa

f (x)
g(x)

= DNE

and if F = 0 but G ‰ 0 then

lim
xÑa

f (x)
g(x)

= 0

However when both F, G = 0 then, as we saw in Example 1.4.6, almost anything can
happen

f (x) = x g(x) = x2 lim
xÑ0

x
x2 = lim

xÑ0

1
x
= DNE

f (x) = x2 g(x) = x lim
xÑ0

x2

x
= lim

xÑ0
x = 0

f (x) = x g(x) = x lim
xÑ0

x
x
= lim

xÑ0
1 = 1

f (x) = 7x2 g(x) = 3x2 lim
xÑ0

7x2

3x2 = lim
xÑ0

7
3
=

7
3

Indeed after exploring Example 1.4.11 and 1.4.13 we gave ourselves the rule of thumb that
if we found 0/0, then there must be something that cancels.

Because the limit that results from these 0/0 situations is not immediately obvious, but
also leads to some interesting mathematics, we should give it a name.

Let a P R and let f (x) and g(x) be functions. If

lim
xÑa

f (x) = 0 and lim
xÑa

g(x) = 0

then the limit

lim
xÑa

f (x)
g(x)

is called a 0/0 indeterminate form.

Definition 3.7.1 (First indeterminate forms).

There are quite a number of mathematical tools for evaluating such indeterminate
forms — Taylor series for example. A simpler method, which works in quite a few cases,
is L’Hôpital’s rule65.

64 Now it is not so surprising, but perhaps back when we started limits, this was not so obvious.
65 Named for the 17th century mathematician, Guillaume de l’Hôpital, who published the first textbook

on differential calculus. The eponymous rule appears in that text, but is believed to have been devel-
oped by Johann Bernoulli. The book was the source of some controversy since it contained many results
by Bernoulli, which l’Hôpital acknowledged in the preface, but Bernoulli felt that l’Hôpital got undue
credit.
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Let a P R and assume that

lim
xÑa

f (x) = lim
xÑa

g(x) = 0

Then

(a) if f 1(a) and g1(a) exist and g1(a) ‰ 0, then

lim
xÑa

f (x)
g(x)

=
f 1(a)
g1(a)

,

(b) while, if f 1(x) and g1(x) exist, with g1(x) nonzero, on an open interval that
contains a, except possibly at a itself, and if the limit

lim
xÑa

f 1(x)
g1(x)

exists or is +8 or is ´8

then

lim
xÑa

f (x)
g(x)

= lim
xÑa

f 1(x)
g1(x)

Theorem 3.7.2 (L’Hôpital’s Rule).

Proof. We only give the proof for part (a). The proof of part (b) is not very difficult, but
uses the Generalised Mean–Value Theorem (Theorem 3.4.38), which is optional and most
readers have not seen it.

• First note that we must have f (a) = g(a) = 0. To see this note that since derivative
f 1(a) exists, we know that the limit

lim
xÑa

f (x) ´ f (a)
x ´ a

exists

Since we know that the denominator goes to zero, we must also have that the nu-
merator goes to zero (otherwise the limit would be undefined). Hence we must have

lim
xÑa

( f (x) ´ f (a)) =
(

lim
xÑa

f (x)
)

´ f (a) = 0

We are told that lim
xÑa

f (x) = 0 so we must have f (a) = 0. Similarly we know that

g(a) = 0.

Note that around that time l’Hôpital’s name was commonly spelled l’Hospital, but the spelling of
silent s in French was changed subsequently; many texts spell his name l’Hospital. If you find your-
self in Paris, you can hunt along Boulevard de l’Hôpital for older street signs carved into the sides of
buildings which spell it “l’Hospital” — though arguably there are better things to do there.
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• Now consider the indeterminate form

lim
xÑa

f (x)
g(x)

= lim
xÑa

f (x) ´ 0
g(x) ´ 0

use 0 = f (a) = g(a)

= lim
xÑa

f (x) ´ f (a)
g(x) ´ g(a)

multiply by 1 =
(x ´ a)´1

(x ´ a)´1

= lim
xÑa

f (x) ´ f (a)
g(x) ´ g(a)

¨
(x ´ a)´1

(x ´ a)´1 rearrange

= lim
xÑa




f (x) ´ f (a)
x ´ a

g(x) ´ g(a)
x ´ a


 use arithmetic of limits

=
lim
xÑa

f (x) ´ f (a)
x ´ a

lim
xÑa

g(x) ´ g(a)
x ´ a

=
f 1(a)
g1(a)

We can justify this step and apply Theorem 1.4.2, since the limits in the numerator
and denominator exist, because they are just f 1(a) and g1(a).

§§§ Optional — Proof of Part (b) of l’Hôpital’s Rule

To prove part (b) we must work around the possibility that f 1(a) and g1(a) do not exist
or that f 1(x) and g1(x) are not continuous at x = a. To do this, we make use of the Gen-
eralised Mean-Value Theorem (Theorem 3.4.38) that was used to prove Equation (3.4.33).
We recommend you review the GMVT before proceeding.

For simplicity we consider the limit

lim
xÑa+

f (x)
g(x)

By assumption, we know that

lim
xÑa+

f (x) = lim
xÑa+

g(x) = 0

For simplicity, we also assume that f (a) = g(a) = 0. This allows us to write

f (x)
g(x)

=
f (x) ´ f (a)
g(x) ´ g(a)

which is the right form for an application of the GMVT.
By assumption f 1(x) and g1(x) exist, with g1(x) nonzero, in some open interval around

a, except possibly at a itself. So we know that they exist, with g1(x) ‰ 0, in some interval
(a, b] with b ą a. Then the GMVT (Theorem 3.4.38) tells us that for x P (a, b]

f (x)
g(x)

=
f (x) ´ f (a)
g(x) ´ g(a)

=
f 1(c)
g1(c)
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where c P (a, x). As we take the limit as x Ñ a, we also have that c Ñ a, and so

lim
xÑa+

f (x)
g(x)

= lim
xÑa+

f 1(c)
g1(c)

= lim
cÑa+

f 1(c)
g1(c)

as required.

3.7.1 §§ Standard Examples

Here are some simple examples using L’Hôpital’s rule.

Example 3.7.3

Consider the limit

lim
xÑ0

sin x
x

• Notice that

lim
xÑ0

sin x = 0

lim
xÑ0

x = 0

so this is a 0/0 indeterminate form, and suggests we try l’Hôpital’s rule.

• To apply the rule we must first check the limits of the derivatives.

f (x) = sin x f 1(x) = cos x and f 1(0) = 1
g(x) = x g1(x) = 1 and g1(0) = 1

• So by l’Hôpital’s rule

lim
xÑ0

sin x
x

=
f 1(0)
g1(0)

=
1
1
= 1.

Example 3.7.3

Example 3.7.4

Consider the limit

lim
xÑ0

sin(x)
sin(2x)

• First check

lim
xÑ0

sin 2x = 0

lim
xÑ0

sin x = 0

so we again have a 0/0 indeterminate form.
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• Set f (x) = sin x and g(x) = sin 2x, then

f 1(x) = cos x f 1(0) = 1
g1(x) = 2 cos 2x g1(0) = 2

• And by l’Hôpital’s rule

lim
xÑ0

sin x
sin 2x

=
f 1(0)
g1(0)

=
1
2

.

Example 3.7.4

Example 3.7.5

Let q ą 1 and compute the limit

lim
xÑ0

qx ´ 1
x

This limit arose in our discussion of exponential functions in Section 2.7.

• First check

lim
xÑ0

(qx
´ 1) = 1 ´ 1 = 0

lim
xÑ0

x = 0

so we have a 0/0 indeterminate form.

• Set f (x) = qx ´ 1 and g(x) = x, then (maybe after a quick review of Section 2.7)

f 1(x) =
d
dx

(qx
´ 1) = qx

¨ log q f 1(0) = log q

g1(x) = 1 g1(0) = 1

• And by l’Hôpital’s rule66

lim
hÑ0

qh ´ 1
h

= log q.

66 While it might not be immediately obvious, this example relies on circular reasoning. In order to apply
l’Hôpital’s rule, we need to compute the derivative of qx. However in order to compute that limit (see
Section 2.7) we needed to evaluate this limit.
A more obvious example of this sort of circular reasoning can be seen if we use l’Hôpital’s rule to
compute the derivative of f (x) = xn at x = a using the limit

f 1(a) = lim
xÑa

xn ´ an

x ´ a
= lim

xÑa

nxn´1 ´ 0
1 ´ 0

= nan´1.

We have used the result d
dx xn = nxn´1 to prove itself!
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Example 3.7.5

In this example, we shall apply L’Hôpital’s rule twice before getting the answer.

Example 3.7.6

Compute the limit

lim
xÑ0

sin(x2)

1 ´ cos x

• Again we should check

lim
xÑ0

sin(x2) = sin 0 = 0

lim
xÑ0

(1 ´ cos x) = 1 ´ cos 0 = 0

and we have a 0/0 indeterminate form.

• Let f (x) = sin(x2) and g(x) = 1 ´ cos x then

f 1(x) = 2x cos(x2) f 1(0) = 0
g1(x) = sin x g1(0) = 0

So if we try to apply l’Hôpital’s rule naively we will get

lim
xÑ0

sin(x2)

1 ´ cos x
=

f 1(0)
g1(0)

=
0
0

.

which is another 0/0 indeterminate form.

• It appears that we are stuck until we remember that l’Hôpital’s rule (as stated in
Theorem 3.7.2) has a part (b) — now is a good time to reread it.

• It says that

lim
xÑ0

f (x)
g(x)

= lim
xÑ0

f 1(x)
g1(x)

provided this second limit exists. In our case this requires us to compute

lim
xÑ0

2x cos(x2)

sin(x)

which we can do using l’Hôpital’s rule again. Now

h(x) = 2x cos(x2) h1(x) = 2 cos(x2) ´ 4x2 sin(x2) h1(0) = 2
ℓ(x) = sin(x) ℓ1(x) = cos(x) ℓ1(0) = 1

By l’Hôpital’s rule

lim
xÑ0

2x cos(x2)

sin(x)
=

h1(0)
ℓ1(0)

= 2
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• Thus our original limit is

lim
xÑ0

sin(x2)

1 ´ cos x
= lim

xÑ0

2x cos(x2)

sin(x)
= 2.

• We can succinctly summarise the two applications of L’Hôpital’s rule in this example
by

lim
xÑ0

sin(x2)

1 ´ cos x
loooomoooon

numÑ0
denÑ0

= lim
xÑ0

2x cos(x2)

sin x
looooomooooon

numÑ0
denÑ0

= lim
xÑ0

2 cos(x2) ´ 4x2 sin(x2)

cos x
loooooooooooooomoooooooooooooon

numÑ2
denÑ1

= 2

Here “num” and “den” are used as abbreviations of “numerator” and “denomina-
tor” respectively.”

Example 3.7.6

One must be careful to ensure that the hypotheses of l’Hôpital’s rule are satisfied before
applying it. The following “warnings” show the sorts of things that can go wrong.

If

lim
xÑa

f (x) = 0 but lim
xÑa

g(x) ‰ 0

then

lim
xÑa

f (x)
g(x)

need not be the same as
f 1(a)
g1(a)

or lim
xÑa

f 1(x)
g1(x)

.

Here is an example. Take

a = 0 f (x) = 3x g(x) = 4 + 5x

Then

lim
xÑ0

f (x)
g(x)

= lim
xÑ0

3x
4 + 5x

=
3 ˆ 0

4 + 5 ˆ 0
= 0

lim
xÑ0

f 1(x)
g1(x)

=
f 1(0)
g1(0)

=
3
5

Warning 3.7.7 (Denominator limit nonzero).
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If

lim
xÑa

g(x) = 0 but lim
xÑa

f (x) ‰ 0

then

lim
xÑa

f (x)
g(x)

need not be the same as lim
xÑa

f 1(x)
g1(x)

.

Here is an example. Take

a = 0 f (x) = 4 + 5x g(x) = 3x

Then

lim
xÑ0

f (x)
g(x)

= lim
xÑ0

4 + 5x
3x

= DNE

lim
xÑ0

f 1(x)
g1(x)

= lim
xÑ0

5
3
=

5
3

Warning 3.7.8 (Numerator limit nonzero).

This next one is more subtle; the limits of the original numerator and denominator
functions both go to zero, but the limit of the ratio their derivatives does not exist.
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APPLICATIONS OF DERIVATIVES 3.7 L’HÔPITAL’S RULE AND INDETERMINATE FORMS

If

lim
xÑa

f (x) = 0 and lim
xÑa

g(x) = 0

but

lim
xÑa

f 1(x)
g1(x)

does not exist

then it is still possible that

lim
xÑa

f (x)
g(x)

exists.

Here is an example. Take

a = 0 f (x) = x2 sin
1
x

g(x) = x

Then (with an application of the squeeze theorem)

lim
xÑ0

f (x) = 0 and lim
xÑ0

g(x) = 0.

If we attempt to apply l’Hôpital’s rule then we have g1(x) = 1 and

f 1(x) = 2x sin
1
x

´ cos
1
x

and we then try to compute the limit

lim
xÑ0

f 1(x)
g1(x)

= lim
xÑ0

(
2x sin

1
x

´ cos
1
x

)

However, this limit does not exist. The first term converges to 0 (by the squeeze
theorem), but the second term cos(1/x) just oscillates wildly between ˘1. All we
can conclude from this is

Since the limit of the ratio of derivatives does not exist, we cannot
apply l’Hôpital’s rule.

Instead we should go back to the original limit and apply the squeeze theorem:

lim
xÑ0

f (x)
g(x)

= lim
xÑ0

x2 sin 1
x

x
= lim

xÑ0
x sin

1
x
= 0,

since |x sin(1/x)| ă |x| and |x| Ñ 0 as x Ñ 0.

Warning 3.7.9 (Limit of ratio of derivatives DNE).

347



APPLICATIONS OF DERIVATIVES 3.7 L’HÔPITAL’S RULE AND INDETERMINATE FORMS

It is also easy to construct an example in which the limits of numerator and denomi-
nator are both zero, but the limit of the ratio and the limit of the ratio of the derivatives do
not exist. A slight change of the previous example shows that it is possible that

lim
xÑa

f (x) = 0 and lim
xÑa

g(x) = 0

but neither of the limits

lim
xÑa

f (x)
g(x)

or lim
xÑa

f 1(x)
g1(x)

exist. Take

a = 0 f (x) = x sin
1
x

g(x) = x

Then (with a quick application of the squeeze theorem)

lim
xÑ0

f (x) = 0 and lim
xÑ0

g(x) = 0.

However,

lim
xÑ0

f (x)
g(x)

= lim
xÑ0

x sin 1
x

x
= lim

xÑ0
sin

1
x

does not exist. And similarly

lim
xÑ0

f 1(x)
g1(x)

= lim
xÑ0

sin 1
x ´ 1

x cos 1
x

x2

does not exist.

3.7.2 §§ Variations

Theorem 3.7.2 is the basic form of L’Hôpital’s rule, but there are also many variations.
Here are a bunch of them.

(a) L’Hôpital’s rule also applies when the limit of x Ñ a is replaced by lim
xÑa+

or by lim
xÑa´

or

by lim
xÑ+8

or by lim
xÑ´8

.

We can justify adapting the rule to the limits to ˘8 via the following reasoning

lim
xÑ8

f (x)
g(x)

= lim
yÑ0+

f (1/y)
g(1/y)

substitute x = 1/y

= lim
yÑ0+

´ 1
y2 f 1(1/y)

´ 1
y2 g1(1/y)

,
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APPLICATIONS OF DERIVATIVES 3.7 L’HÔPITAL’S RULE AND INDETERMINATE FORMS

where we have used l’Hôpital’s rule (assuming this limit exists) and the fact that
d
dy f (1/y) = ´ 1

y2 f 1(1/y) (and similarly for g). Cleaning this up and substituting
y = 1/x gives the required result:

lim
xÑ8

f (x)
g(x)

= lim
yÑ0+

f 1(1/y)
g1(1/y)

= lim
xÑ8

f 1(x)
g1(x)

.

Example 3.7.10

Consider the limit

lim
xÑ8

arctan x ´ π
2

1/x

Both numerator and denominator go to 0 as x Ñ 8, so this is an 0/0 indeterminate
form. We find

lim
xÑ+8

arctan x ´ π
2

1
x

loooooomoooooon

numÑ0
denÑ0

= lim
xÑ+8

1
1+x2

´ 1
x2

= ´ lim
xÑ+8

1
1 + 1

x2
loomoon

numÑ1
denÑ1

= ´1

We have applied L’Hôpital’s rule with

f (x) = arctan x ´
π

2
g(x) =

1
x

f 1(x) =
1

1 + x2 g1(x) = ´
1
x2

Example 3.7.10

(b) 8
8

indeterminate form: L’Hôpital’s rule also applies when lim
xÑa

f (x) = 0, lim
xÑa

g(x) = 0 is

replaced by lim
xÑa

f (x) = ˘8, lim
xÑa

g(x) = ˘8.

Example 3.7.11

Consider the limit

lim
xÑ8

log x
x

The numerator and denominator both blow up towards infinity so this is an 8/8 in-
determinate form. An application of l’Hôpital’s rule gives

lim
xÑ8

log x
x

loomoon

numÑ8
denÑ8

= lim
xÑ8

1/x
1

= lim
xÑ8

1
x
= 0
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Example 3.7.11

Example 3.7.12

Consider the limit

lim
xÑ8

5x2 + 3x ´ 3
x2 + 1

Then by two applications of l’Hôpital’s rule we get

lim
xÑ8

5x2 + 3x ´ 3
x2 + 1

loooooomoooooon

numÑ8
denÑ8

= lim
xÑ8

10x + 3
2x

looomooon

numÑ8
denÑ8

= lim
xÑ8

10
2

= 5.

Example 3.7.12

Example 3.7.13

Compute the limit

lim
xÑ0+

log x
tan

(
π
2 ´ x

)

We can compute this using l’Hôpital’s rule twice:

lim
xÑ0+

log x
tan

(
π
2 ´ x

)
loooooomoooooon

numÑ´8
denÑ+8

= lim
xÑ0+

1
x

´ sec2(π
2 ´ x)

= ´ lim
xÑ0+

cos2(π
2 ´ x)
x

loooooomoooooon

numÑ0
denÑ0

= ´ lim
xÑ0+

2 cos(π
2 ´ x) sin(π

2 ´ x)
1

loooooooooooooomoooooooooooooon

numÑ0
denÑ1

= 0

The first application of L’Hôpital’s was with

f (x) = log x g(x) = tan
(π

2
´ x
)

f 1(x) =
1
x

g1(x) = ´ sec2
(π

2
´ x
)

and the second time with

f (x) = cos2
(π

2
´ x
)

g(x) = x

f 1(x) = 2 cos
(π

2
´ x
)[

´ sin
(π

2
´ x
)]

(´1) g1(x) = 1
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Example 3.7.13

Sometimes things don’t quite work out as we would like and l’Hôpital’s rule can get
stuck in a loop. Remember to think about the problem before you apply any rule.

Example 3.7.14

Consider the limit

lim
xÑ8

ex + e´x

ex ´ e´x

Clearly both numerator and denominator go to 8, so we have a 8/8 indeterminate
form. Naively applying l’Hôpital’s rule gives

lim
xÑ8

ex + e´x

ex ´ e´x = lim
xÑ8

ex ´ e´x

ex + e´x

which is again a 8/8 indeterminate form. So apply l’Hôpital’s rule again:

lim
xÑ8

ex ´ e´x

ex + e´x = lim
xÑ8

ex + e´x

ex ´ e´x

which is right back where we started!

The correct approach to such a limit is to apply the methods we learned in Chapter 1
and rewrite

ex + e´x

ex ´ e´x =
ex(1 + e´2x)

ex(1 ´ e´2x)
=

1 + e´2x

1 ´ e´2x

and then take the limit.

A similar sort of l’Hôpital-rule-loop will occur if you naively apply l’Hôpital’s rule to
the limit

lim
xÑ8

?
4x2 + 1
5x ´ 1

which appeared in Example 1.5.6.

Example 3.7.14

§§§ Optional — Proof of l’Hôpital’s Rule for 8/8 forms

We can justify this generalisation of l’Hôpital’s rule with some careful manipulations.
Since the derivatives f 1, g1 exist in some interval around a, we know that f , g are con-
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tinuous in some interval around a; let x, t be points inside that interval. Now rewrite67

f (x)
g(x)

=
f (x)
g(x)

+

(
f (t)
g(x)

´
f (t)
g(x)

)

looooooooomooooooooon

=0

+

(
f (x) ´ f (t)
g(x) ´ g(t)

´
f (x) ´ f (t)
g(x) ´ g(t)

)

looooooooooooooooooomooooooooooooooooooon

=0

=
f (x) ´ f (t)
g(x) ´ g(t)
loooooomoooooon

ready for GMVT

+
f (t)
g(x)

+

(
f (x)
g(x)

´
f (t)
g(x)

´
f (x) ´ f (t)
g(x) ´ g(t)

)

looooooooooooooooooomooooooooooooooooooon

we can clean it up

=
f (x) ´ f (t)
g(x) ´ g(t)

+
f (t)
g(x)

+

(
f (x) ´ f (t)

g(x)
´

f (x) ´ f (t)
g(x) ´ g(t)

)

=
f (x) ´ f (t)
g(x) ´ g(t)

+
f (t)
g(x)

+

(
1

g(x)
´

1
g(x) ´ g(t)

)
¨ ( f (x) ´ f (t))

=
f (x) ´ f (t)
g(x) ´ g(t)

+
f (t)
g(x)

+

(
g(x) ´ g(t) ´ g(x)
g(x)(g(x) ´ g(t))

)
¨ ( f (x) ´ f (t))

=
f (x) ´ f (t)
g(x) ´ g(t)
loooooomoooooon

ready for GMVT

+
f (t)
g(x)

´
g(t)
g(x)

¨
f (x) ´ f (t)
g(x) ´ g(t)
loooooomoooooon

ready for GMVT

Oof! Now the generalised mean-value theorem (Theorem 3.4.38) tells us there is a c
between x and t so that

f (x) ´ f (t)
g(x) ´ g(t)

=
f 1(c)
g1(c)

Now substitute this into the large expression we derived above:

f (x)
g(x)

=
f 1(c)
g1(c)

+
1

g(x)

(
f (t) ´

f 1(c)
g1(c)

¨ g(t)
)

At first glance this does not appear so useful, however if we fix t and take the limit as
x Ñ a, then it becomes

lim
xÑa

f (x)
g(x)

= lim
xÑa

f 1(c)
g1(c)

+ lim
xÑa

1
g(x)

(
f (t) ´

f 1(c)
g1(c)

¨ g(t)
)

Since g(x) Ñ 8 as x Ñ a, this last term goes to zero

= lim
xÑa

f 1(c)
g1(c)

+ 0

Now take the limit as t Ñ a. The left-hand side is unchanged since it is independent
of t. The right-hand side, however, does change; the number c is trapped between x
and t. Since we have already taken the limit x Ñ a, so when we take the limit t Ñ a,
we are effectively taking the limit c Ñ a. Hence

lim
xÑa

f (x)
g(x)

= lim
cÑa

f 1(c)
g1(c)

which is the desired result.

67 This is quite a clever argument, but it is not immediately obvious why one rewrites things this way.
After the fact it becomes clear that it is done to massage the expression into the form where we can
apply the generalised mean-value theorem (Theorem 3.4.38).
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(c) 0 ¨ 8 indeterminate form: When lim
xÑa

f (x) = 0 and lim
xÑa

g(x) = 8. We can use a little

algebra to manipulate this into either a 0
0 or 8

8
form:

lim
xÑa

f (x)
1/g(x)

lim
xÑa

g(x)
1/ f (x)

Example 3.7.15

Consider the limit

lim
xÑ0+

x ¨ log x

Here the function f (x) = x goes to zero, while g(x) = log x goes to ´8. If we rewrite
this as the fraction

x ¨ log x =
log x
1/x

then the 0 ¨ 8 form has become an 8/8 form.

The result is then

lim
xÑ0+

x
loomoon

Ñ0

log x
loomoon

Ñ´8

= lim
xÑ0+

log x
1
x

loomoon

numÑ´8
denÑ8

= lim
xÑ0+

1
x

´ 1
x2

= ´ lim
xÑ0+

x = 0

Example 3.7.15

Example 3.7.16

In this example we’ll evaluate lim
xÑ+8

xne´x, for all natural numbers n. We’ll start with

n = 1 and n = 2 and then, using what we have learned from those cases, move on to
general n.

lim
xÑ+8

x
loomoon

Ñ8

e´x
loomoon

Ñ0

= lim
xÑ+8

x
ex

loomoon

numÑ+8
denÑ+8

= lim
xÑ+8

1
ex

loomoon

numÑ1
denÑ+8

= lim
xÑ+8

e´x = 0

Applying l’Hôpital twice,

lim
xÑ+8

x2
loomoon

Ñ8

e´x
loomoon

Ñ0

= lim
xÑ+8

x2

ex
loomoon

numÑ+8
denÑ+8

= lim
xÑ+8

2x
ex

loomoon

numÑ8
denÑ+8

= lim
xÑ+8

2
ex

loomoon

numÑ2
denÑ+8

= lim
xÑ+8

2e´x = 0
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Indeed, for any natural number n, applying l’Hôpital n times gives

lim
xÑ+8

xn
loomoon

Ñ8

e´x
loomoon

Ñ0

= lim
xÑ+8

xn

ex
loomoon

numÑ+8
denÑ+8

= lim
xÑ+8

nxn´1

ex
loomoon

numÑ8
denÑ+8

= lim
xÑ+8

n(n ´ 1)xn´2

ex
looooooomooooooon

numÑ8
denÑ+8

= ¨ ¨ ¨ = lim
xÑ+8

n!
ex

loomoon

numÑn!
denÑ+8

= 0

Example 3.7.16

(d) 8 ´ 8 indeterminate form: When lim
xÑa

f (x) = 8 and lim
xÑa

g(x) = 8. We rewrite the
difference as a fraction using a common denominator

f (x) ´ g(x) =
h(x)
ℓ(x)

which is then a 0/0 or 8/8 form.

Example 3.7.17

Consider the limit

lim
xÑ π

2
´
(sec x ´ tan x)

Since the limit of both sec x and tan x is +8 as x Ñ π
2

´, this is an 8 ´ 8 indeterminate
form. However we can rewrite this as

sec x ´ tan x =
1

cos x
´

sin x
cos x

=
1 ´ sin x

cos x

which is then a 0/0 indeterminate form. This then gives

lim
xÑ π

2
´

(
sec x
loomoon

Ñ+8

´ tan x
loomoon

Ñ+8

)
= lim

xÑ π
2

´

1 ´ sin x
cos x

looomooon

numÑ0
denÑ0

= lim
xÑ π

2
´

´ cos x
´ sin x
loomoon

numÑ0
denÑ´1

= 0

Example 3.7.17
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In the last example, Example 3.7.17, we converted an 8 ´ 8 indeterminate form into
a 0

0 indeterminate form by exploiting the fact that the two terms, sec x and tan x, in
the 8 ´ 8 indeterminate form shared a common denominator, namely cos x. In the
“real world” that will, of course, almost never happen. However as the next couple of
examples show, you can often massage these expressions into suitable forms.

Here is another, much more complicated, example, where it doesn’t happen.

Example 3.7.18

In this example, we evaluate the 8 ´ 8 indeterminate form

lim
xÑ0

( 1
x

loomoon

Ñ˘8

´
1

log(1 + x)
looooomooooon

Ñ˘8

)

We convert it into a 0
0 indeterminate form simply by putting the two fractions, 1

x and
1

log(1+x) over a common denominator.

lim
xÑ0

( 1
x

loomoon

Ñ˘8

´
1

log(1 + x)
looooomooooon

Ñ˘8

)
= lim

xÑ0

log(1 + x) ´ x
x log(1 + x)

loooooooomoooooooon

numÑ0
denÑ0

(E1)

Now we apply L’Hôpital’s rule, and simplify

lim
xÑ0

log(1 + x) ´ x
x log(1 + x)

loooooooomoooooooon

numÑ0
denÑ0

= lim
xÑ0

1
1+x ´ 1

log(1 + x) + x
1+x

= lim
xÑ0

1 ´ (1 + x)
(1 + x) log(1 + x) + x

= ´ lim
xÑ0

x
(1 + x) log(1 + x) + x
looooooooooooomooooooooooooon

numÑ0
denÑ1ˆ0+0=0

(E2)

Then we apply L’Hôpital’s rule a second time

´ lim
xÑ0

x
(1 + x) log(1 + x) + x
looooooooooooomooooooooooooon

numÑ0
denÑ1ˆ0+0=0

= ´ lim
xÑ0

1
log(1 + x) + 1+x

1+x + 1
looooooooooooomooooooooooooon

numÑ1
denÑ0+1+1=2

= ´
1
2

(E3)

Combining (E1), (E2) and (E3) gives our final answer

lim
xÑ0

(1
x

´
1

log(1 + x)

)
= ´

1
2

Example 3.7.18
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The following example can be done by l’Hôpital’s rule, but it is actually far simpler to
multiply by the conjugate and take the limit using the tools of Chapter 1.

Example 3.7.19

Consider the limit

lim
xÑ8

a

x2 + 4x ´

a

x2 ´ 3x

Neither term is a fraction, but we can write
a

x2 + 4x ´

a

x2 ´ 3x = x
a

1 + 4/x ´ x
a

1 ´ 3/x assuming x ą 0

= x
(
a

1 + 4/x ´
a

1 ´ 3/x
)

=

?
1 + 4/x ´

?
1 ´ 3/x

1/x

which is now a 0/0 form with f (x) =
?

1 + 4/x ´
?

1 ´ 3/x and g(x) = 1/x. Then

f 1(x) =
´4/x2

2
?

1 + 4/x
´

3/x2

2
?

1 ´ 3/x
g1(x) = ´

1
x2

Hence

f 1(x)
g1(x)

=
4

2
?

1 + 4/x
+

3
?

1 ´ 3/x

And so in the limit as x Ñ 8

lim
xÑ8

f 1(x)
g1(x)

=
4
2
+

3
2
=

7
2

and so our original limit is also 7/2.

By comparison, if we multiply by the conjugate we have

a

x2 + 4x ´

a

x2 ´ 3x =
(
a

x2 + 4x ´

a

x2 ´ 3x
)

¨

?
x2 + 4x +

?
x2 ´ 3x

?
x2 + 4x +

?
x2 ´ 3x

=
x2 + 4x ´ (x2 ´ 3x)

?
x2 + 4x +

?
x2 ´ 3x

=
7x

?
x2 + 4x +

?
x2 ´ 3x

=
7

?
1 + 4/x +

?
1 ´ 3/x

assuming x ą 0

Now taking the limit as x Ñ 8 gives 7/2 as required. Just because we know l’Hôpital’s
rule, it does not mean we should use it everywhere it might be applied.

Example 3.7.19
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(e) 18 indeterminate form: We can use l’Hôpital’s rule on limits of the form

lim
xÑa

f (x)g(x) with

lim
xÑa

f (x) = 1 and lim
xÑa

g(x) = 8

by considering the logarithm of the limit68:

log
(

lim
xÑa

f (x)g(x)
)
= lim

xÑa
log
(

f (x)g(x)
)
= lim

xÑa
log ( f (x)) ¨ g(x)

which is now an 0 ¨ 8 form. This can be further transformed into a 0/0 or 8/8 form:

log
(

lim
xÑa

f (x)g(x)
)
= lim

xÑa
log ( f (x)) ¨ g(x)

= lim
xÑa

log ( f (x))
1/g(x)

.

Example 3.7.20

The following limit appears quite naturally when considering systems which display
exponential growth or decay.

lim
xÑ0

(1 + x)a/x with the constant a ‰ 0

Since (1 + x) Ñ 1 and a/x Ñ 8 this is an 18 indeterminate form.

By considering its logarithm we have

log
(

lim
xÑ0

(1 + x)a/x

)
= lim

xÑ0
log
(
(1 + x)a/x

)

= lim
xÑ0

a
x

log(1 + x)

= lim
xÑ0

a log(1 + x)
x

which is now a 0/0 form. Applying l’Hôpital’s rule gives

lim
xÑ0

a log(1 + x)
x

loooooomoooooon

numÑ0
denÑ0

= lim
xÑ0

a
1+x
1

loomoon

numÑa
denÑ1

= a

Since (1+ x)a/x = exp
[
log
(
(1 + x)a/x

)]
and the exponential function is continuous,

our original limit is ea.

Example 3.7.20

68 We are using the fact that the logarithm is a continuous function and Theorem 1.6.10.
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Here is a more complicated example of a 18 indeterminate form.

Example 3.7.21

In the limit

lim
xÑ0

(sin x
x

)1/x2

the base, sin x
x , converges to 1 (see Example 3.7.3) and the exponent, 1

x2 , goes to 8. But
if we take logarithms then

log
(sin x

x

)1/x2

=
log sin x

x
x2

then, in the limit x Ñ 0, we have a 0/0 indeterminate form. One application of
l’Hôpital’s rule gives

lim
xÑ0

log sin x
x

x2
looomooon

numÑ0
denÑ0

= lim
xÑ0

x
sin x

x cos x´sin x
x2

2x
= lim

xÑ0

x cos x´sin x
x sin x
2x

= lim
xÑ0

x cos x ´ sin x
2x2 sin x

which is another 0/0 form. Applying l’Hôpital’s rule again gives:

lim
xÑ0

x cos x ´ sin x
2x2 sin x

looooooomooooooon

numÑ0
denÑ0

= lim
xÑ0

cos x ´ x sin x ´ cos x
4x sin x + 2x2 cos x

= ´ lim
xÑ0

x sin x
4x sin x + 2x2 cos x

= ´ lim
xÑ0

sin x
4 sin x + 2x cos x

which is yet another 0/0 form. Once more with l’Hôpital’s rule:

´ lim
xÑ0

sin x
4 sin x + 2x cos x
looooooooomooooooooon

numÑ0
denÑ0

= ´ lim
xÑ0

cos x
4 cos x + 2 cos x ´ 2x sin x
loooooooooooooooomoooooooooooooooon

numÑ1
denÑ6

= ´
1
6

Oof! We have just shown that the logarithm of our original limit is ´1/6. Hence the
original limit itself is e´1/6.

This was quite a complicated example. However it does illustrate the importance of
cleaning up your algebraic expressions. This will both reduce the amount of work you
have to do and will also reduce the number of errors you make.

Example 3.7.21
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(f) 00 indeterminate form: Like the 18 form, this can be treated by considering its loga-
rithm.

Example 3.7.22

For example, in the limit

lim
xÑ0+

xx

both the base, x, and the exponent, also x, go to zero. But if we consider the logarithm
then we have

log xx = x log x

which is a 0 ¨ 8 indeterminate form, which we already know how to treat. In fact, we
already found, in Example 3.7.15, that

lim
xÑ0+

x log x = 0

Since the exponential is a continuous function

lim
xÑ0+

xx = lim
xÑ0+

exp
(
x log x

)
= exp

(
lim

xÑ0+
x log x

)
= e0 = 1

Example 3.7.22

(g) 80 indeterminate form: Again, we can treat this form by considering its logarithm.

Example 3.7.23

For example, in the limit

lim
xÑ+8

x1/x

the base, x, goes to infinity and the exponent, 1
x , goes to zero. But if we take logarithms

log x1/x =
log x

x
which is an 8/8 form, which we know how to treat.

lim
xÑ+8

log x
x

loomoon

numÑ8
denÑ8

= lim
xÑ+8

1
x
1

loomoon

numÑ0
denÑ1

= 0

Since the exponential is a continuous function

lim
xÑ+8

x1/x = lim
xÑ+8

exp
( log x

x

)
= exp

(
lim
xÑ8

log x
x

)
= e0 = 1

Example 3.7.23
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TOWARDS INTEGRAL CALCULUS

Chapter 4

4.1 Ĳ Introduction to Antiderivatives

We have now come to the final topic of the course — antiderivatives. This is only a short
section since it is really just to give a taste of the next calculus subject: integral calculus.

So far in the course we have learned how to determine the rate of change (i.e. the
derivative) of a given function. That is

given a function f (x) find
d f
dx

.

Along the way we developed an understanding of limits, which allowed us to define
instantaneous rates of change — the derivative. We then went on to develop a number of
applications of derivatives to modelling and approximation. In this last section we want
to just introduce the idea of antiderivatives. That is

given a derivative
d f
dx

find the original function f (x).

For example — say we know that

d f
dx

= x2

and we want to find f (x). From our previous experience differentiating we know that
derivatives of polynomials are again polynomials. So we guess that our unknown func-
tion f (x) is a polynomial. Further we know that when we differentiate xn we get nxn´1 —
multiply by the exponent and reduce the exponent by 1. So to end up with a derivative of
x2 we need to have differentiated an x3. But d

dx x3 = 3x2, so we need to divide both sides
by 3 to get the answer we want. That is

d
dx

(
1
3

x3
)
= x2
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However we know that the derivative of a constant is zero, so we also have

d
dx

(
1
3

x3 + 1
)
= x2

and

d
dx

(
1
3

x3
´ π

)
= x2

At this point it will really help the discussion to give a name to what we are doing.

A function F(x) that satisfies

d
dx

F(x) = f (x)

is called an antiderivative of f (x).

Definition 4.1.1.

Notice the use of the indefinite article there — an antiderivative. This is precisely
because we can always add or subtract a constant to an antiderivative and when we dif-
ferentiate we’ll get the same answer. We can write this as a lemma, but it is actually just
Corollary 2.13.12 (from back in the section on the mean-value theorem) in disguise.

Let F(x) be an antiderivative of f (x), then for any constant c, the function F(x) +
c is also an antiderivative of f (x).

Lemma 4.1.2.

Because of this lemma we typically write antiderivatives with “+c” tacked on the end.
That is, if we know that F1(x) = f (x), then we would state that the antiderivative of f (x)
is

F(x) + c

where this “+c” is there to remind us that we can always add or subtract some constant
and it will still be an antiderivative of f (x). Hence the antiderivative of x2 is

1
3

x3 + c

Similarly, the antiderivative of x4 is

1
5

x5 + c
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and for
?

x = x1/2 it is

2
3

x3/2 + c

This last one is tricky (at first glance) — but we can always check our answer by differen-
tiating.

d
dx

(
2
3

x3/2 + c
)
=

2
3

¨
3
2

x1/2 + 0 ✓

Now in order to determine the value of c we need more information. For example, we
might be asked

Given that g1(t) = t2 and g(3) = 7 find g(t).

We are given the derivative and one piece of additional information and from these two
facts we need to find the original function. From our work above we know that

g(t) =
1
3

t3 + c

and we can find c from the other piece of information

7 = g(3) =
1
3

¨ 27 + c = 9 + c

Hence c = ´2 and so

g(t) =
1
3

t3
´ 2

We can then very easily check our answer by recomputing g(3) and g1(t). This is a good
habit to get into.

Finding antiderivatives of polynomials is generally not too hard. We just need to use
the rule

if f (x) = xn then F(x) =
1

n + 1
xn+1 + c.

Of course this breaks down when n = ´1. In order to find an antiderivative for f (x) = 1
x

we need to remember that d
dx log x = 1

x , and more generally that d
dx log |x| = 1

x . See
Example 2.10.4. So

if f (x) =
1
x

then F(x) = log |x| + c

Example 4.1.3

Let f (x) = 3x5 ´ 7x2 + 2x + 3 + x´1 ´ x´2. Then the antiderivative of f (x) is

F(x) =
3
6

x6
´

7
3

x3 +
2
2

x2 + 3x + log |x| ´
1

´1
x´1 + c clean it up

=
1
2

x6
´

7
3

x3 + x2 + 3x + log |x| + x´1 + c

363



TOWARDS INTEGRAL CALCULUS 4.1 INTRODUCTION TO ANTIDERIVATIVES

Now to check we should differentiate and hopefully we get back to where we started

F1(x) =
6
2

x5
´

7
3

¨ 3x2 + 2x + 3 +
1
x

´ x´2

= 3x5
´ 7x2 + 2x + 3 +

1
x

´ x´2 ✓

Example 4.1.3

In your next calculus course you will develop a lot of machinery to help you find
antiderivatives. At this stage about all that we can do is continue the sort of thing we
have done. Think about the derivatives we know and work backwards. So, for example,
we can take a list of derivatives

F(x) 1 xn sin x cos x tan x ex ln |x| arcsin x arctan x

f (x) = d
dx F(x) 0 nxn´1 cos x ´ sin x sec2 x ex 1

x
1?

1´x2
1

1+x2

and flip it upside down to give the tables

f (x) = d
dx F(x) 0 nxn´1 cos x ´ sin x sec2 x ex 1

x

F(x) c xn + c sin x + c cos x + c tan x + c ex + c ln |x| + c

f (x) = d
dx F(x) 1?

1´x2
1

1+x2

F(x) arcsin x + c arctan x + c

of antiderivatives. Here c is just a constant — any constant. But we can do a little more;
clean up xn by dividing by n and then replacing n by n + 1. Similarly we can tweak sin x
by multiplying by ´1:

f (x) = d
dx F(x) 0 xn cos x sin x sec2 x ex 1

x

F(x) c 1
n+1 xn+1 + c sin x + c ´ cos x + c tan x + c ex + c ln |x| + c

f (x) = d
dx F(x) 1?

1´x2
1

1+x2

F(x) arcsin x + c arctan x + c

Here are a couple more examples.

Example 4.1.4

Consider the functions

f (x) = sin x + cos 2x g(x) =
1

1 + 4x2

Find their antiderivatives.
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Solution. The first one we can almost just look up our table. Let F be the antiderivative of
f , then

F(x) = ´ cos x + sin 2x + c is not quite right.

When we differentiate to check things, we get a factor of two coming from the chain rule.
Hence to compensate for that we multiply sin 2x by 1

2 :

F(x) = ´ cos x +
1
2

sin 2x + c

Differentiating this shows that we have the right answer.
Similarly, if we use G to denote the antiderivative of g, then it appears that G is nearly

arctan x. To get this extra factor of 4 we need to substitute x ÞÑ 2x. So we try

G(x) = arctan(2x) + c which is nearly correct.

Differentiating this gives us

G1(x) =
2

1 + (2x)2 = 2g(x)

Hence we should multiply by 1
2 . This gives us

G(x) =
1
2

arctan(2x) + c.

We can then check that this is, in fact, correct just by differentiating.
Example 4.1.4

Now let’s do a more substantial example.

Example 4.1.5

Suppose that we are driving to class. We start at x = 0 at time t = 0. Our velocity is
v(t) = 50 sin(t). The class is at x = 25. When do we get there?

Solution. Let’s denote by x(t) our position at time t. We are told that

• x(0) = 0

• x1(t) = 50 sin t

We have to determine x(t) and then find the time T that obeys x(T) = 25. Now armed
with our table above we know that the antiderivative of sin t is just ´ cos t. We can check
this:

d
dt

(´ cos t) = sin t

We can then get the factor of 50 by multiplying both sides of the above equation by 50:

d
dt

(´50 cos t) = 50 sin t
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And of course, this is just an antiderivative of 50 sin t; to write down the general an-
tiderivative we just add a constant c:

d
dt

(´50 cos t + c) = 50 sin t

Since v(t) = d
dt x(t), this antiderivative is x(t):

x(t) = ´50 cos t + c

To determine c we make use of the other piece of information we are given, namely

x(0) = 0.

Substituting this in gives us

x(0) = ´50 cos 0 + c = ´50 + c

Hence we must have c = 50 and so

x(t) = ´50 cos t + 50 = 50(1 ´ cos t).

Now that we have our position as a function of time, we can determine how long it
takes us to arrive there. That is, we can find the time T so that x(T) = 25.

25 = x(T) = 50(1 ´ cos T) so
1
2
= 1 ´ cos T

´
1
2
= ´ cos T

1
2
= cos T.

Recalling our special triangles, we see that T = π
3 .

Example 4.1.5

The example below shows how antiderivatives arise naturally when studying differ-
ential equations.

Example 4.1.6 (Theorem 3.3.2 revisited.)

Back in Section 3.3 we encountered a simple differential equation, namely equation 3.3.1.
We were able to solve this equation by guessing the answer and then checking it carefully.
We can derive the solution more systematically by using antiderivatives.

Recall equation 3.3.1:

dQ
dt

= ´kQ
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where Q(t) is the amount of radioactive material at time t and we assume Q(t) ą 0. Take
this equation and divide both sides by Q(t) to get

1
Q(t)

dQ
dt

= ´k

At this point we should1 think that the left-hand side is familiar. Now is a good moment
to look back at logarithmic differentiation in Section 2.10.

The left-hand side is just the derivative of log Q(t):

d
dt

(log Q(t)) =
1

Q(t)
dQ
dt

= ´k

So to solve this equation, we are really being asked to find all functions log Q(t) having
derivative ´k. That is, we need to find all antiderivatives of ´k. Of course that is just
´kt + c. Hence we must have

log Q(t) = ´kt + c

and then taking the exponential of both sides gives

Q(t) = e´kt+c = ec
¨ e´kt = Ce´kt

where C = ec. This is precisely Theorem 3.3.2.

Example 4.1.6

The above is a small example of the interplay between antiderivatives and differential
equations.

Here is another example of how we might use antidifferentiation to compute areas or
volumes.

Example 4.1.7

We know (especially if one has revised the material in the appendix and Appendix B.5.2
in particular) that the volume of a right-circular cone is

V =
π

3
r2h

where h is the height of the cone and r is the radius of its base. Now, the derivation of this
formula given in Appendix B.5.2 is not too simple. We present an alternate proof here that
uses antiderivatives.

1 Well — perhaps it is better to say “notice that”. Let’s not make this a moral point.
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Consider cutting off a portion of the cone so that its new height is x (rather than h).
Call the volume of the resulting smaller cone V(x). We are going to determine V(x) for
all x ě 0, including x = h, by first evaluating V1(x) and V(0) (which is obviously 0).

Call the radius of the base of the new smaller cone y (rather than r). By similar triangles
we know that

r
h
=

y
x

.

Now keep x and y fixed and consider cutting off a little more of the cone so its height is X.
When we do so, the radius of the base changes from y to Y and again by similar triangles
we know that

Y
X

=
y
x
=

r
h

The change in volume is then

V(x) ´ V(X)

Of course if we knew the formula for the volume of a cone, then we could compute the
above exactly. However, even without knowing the volume of a cone, it is easy to derive
upper and lower bounds on this quantity. The piece removed has bottom radius y and top
radius Y. Hence its volume is bounded above and below by the cylinders of height x ´ X
and with radius y and Y respectively. Hence

πY2(x ´ X) ď V(x) ´ V(X) ď πy2(x ´ X)

since the volume of a cylinder is just the area of its base times its height. Now massage
this expression a little

πY2
ď

V(x) ´ V(X)

x ´ X
ď πy2

The middle term now looks like a derivative; all we need to do is take the limit as X Ñ x:

lim
XÑx

πY2
ď lim

XÑx

V(x) ´ V(X)

x ´ X
ď lim

XÑx
πy2
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The rightmost term is independent of X and so is just πy2. In the leftmost term, as X Ñ x,
we must have that Y Ñ y. Hence the leftmost term is just πy2. Then by the squeeze
theorem (Theorem 1.4.17) we know that

dV
dx

= lim
XÑx

V(x) ´ V(X)

x ´ X
= πy2.

But we know that

y =
r
h

¨ x

so

dV
dx

= π
( r

h

)2
x2

Now we can antidifferentiate to get back to V:

V(x) =
π

3

( r
h

)2
x3 + c

To determine c notice that when x = 0 the volume of the cone is just zero and so c = 0.
Thus

V(x) =
π

3

( r
h

)2
x3

and so when x = h we are left with

V(h) =
π

3

( r
h

)2
h3 =

π

3
r2h

as required.
Example 4.1.7
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HIGH SCHOOL MATERIAL

Appendix A

This chapter is really split into two parts.

• Sections A.1 to A.13 we expect you to understand and know.

• The very last section, Section A.14, contains results that we don’t expect you to mem-
orise, but that we think you should be able to quickly derive from other results you
know.

A.1 Ĳ Similar Triangles

Two triangles T1, T2 are similar when

• (AAA — angle angle angle) The angles of T1 are the same as the angles of T2.

• (SSS — side side side) The ratios of the side lengths are the same. That is

A
a
=

B
b
=

C
c

• (SAS — side angle side) Two sides have lengths in the same ratio and the angle
between them is the same. For example

A
a
=

C
c

and angle β is same
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A.2 Ĳ Pythagoras

For a right-angled triangle the length of the hypotenuse is related to the lengths of the
other two sides by

(adjacent)2 + (opposite)2 = (hypotenuse)2

A.3 Ĳ Trigonometry — Definitions

sin θ =
opposite

hypotenuse
csc θ =

1
sin θ

cos θ =
adjacent

hypotenuse
sec θ =

1
cos θ

tan θ =
opposite
adjacent

cot θ =
1

tan θ

A.4 Ĳ Radians, Arcs and Sectors

For a circle of radius r and angle of θ radians:

• Arc length L(θ) = rθ.

• Area of sector A(θ) = θ
2r2.
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A.5 Ĳ Trigonometry — Graphs

sin θ cos θ tan θ

´π ´ π
2

π
2

π 3π
2

2π

´1

1

´π ´ π
2

π
2

π 3π
2

2π

´1

1

´π ´ π
2

π
2

π 3π
2

2π

A.6 Ĳ Trigonometry — Special Triangles

From the above pair of special triangles we have

sin
π

4
=

1
?

2
sin

π

6
=

1
2

sin
π

3
=

?
3

2

cos
π

4
=

1
?

2
cos

π

6
=

?
3

2
cos

π

3
=

1
2

tan
π

4
= 1 tan

π

6
=

1
?

3
tan

π

3
=

?
3

A.7 Ĳ Trigonometry — Simple Identities

• Periodicity

sin(θ + 2π) = sin(θ) cos(θ + 2π) = cos(θ)

• Reflection

sin(´θ) = ´ sin(θ) cos(´θ) = cos(θ)

• Reflection around π/4

sin
(

π
2 ´ θ

)
= cos θ cos

(
π
2 ´ θ

)
= sin θ
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• Reflection around π/2

sin (π ´ θ) = sin θ cos (π ´ θ) = ´ cos θ

• Rotation by π

sin (θ + π) = ´ sin θ cos (θ + π) = ´ cos θ

• Pythagoras

sin2 θ + cos2 θ = 1

A.8 Ĳ Trigonometry — Add and Subtract Angles

• Sine

sin(α ˘ β) = sin(α) cos(β) ˘ cos(α) sin(β)

• Cosine

cos(α ˘ β) = cos(α) cos(β) ¯ sin(α) sin(β)

A.9 Ĳ Inverse Trigonometric Functions

Some of you may not have studied inverse trigonometric functions in highschool, how-
ever we still expect you to know them by the end of the course.

arcsin x arccos x arctan x

Domain: ´1 ď x ď 1 Domain: ´1 ď x ď 1 Domain: all real numbers

Range: ´π
2 ď arcsin x ď π

2 Range: 0 ď arccos x ď π Range: ´π
2 ă arctan x ă π

2

´1 1

´π/2

π/2

´1 1

π/2

π

´ π
2

π
2

Since these functions are inverses of each other we have

arcsin(sin θ) = θ ´
π

2
ď θ ď

π

2
arccos(cos θ) = θ 0 ď θ ď π

arctan(tan θ) = θ ´
π

2
ď θ ď

π

2
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and also

sin(arcsin x) = x ´1 ď x ď 1
cos(arccos x) = x ´1 ď x ď 1
tan(arctan x) = x any real x

arccsc x arcsec x arccot x

Domain: |x| ě 1 Domain: |x| ě 1 Domain: all real numbers

Range: ´π
2 ď arccsc x ď π

2 Range: 0 ď arcsec x ď π Range: 0 ă arccot x ă π
arccsc x ‰ 0 arcsec x ‰ π

2

´1 1

´ π
2

π
2

´1 1

π
2

π

π
2

π

Again

arccsc(csc θ) = θ ´
π

2
ď θ ď

π

2
, θ ‰ 0

arcsec(sec θ) = θ 0 ď θ ď π, θ ‰
π

2
arccot(cot θ) = θ 0 ă θ ă π

and

csc(arccsc x) = x |x| ě 1
sec(arcsec x) = x |x| ě 1
cot(arccot x) = x any real x

A.10 Ĳ Areas

• Area of a rectangle

A = bh
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• Area of a triangle

A =
1
2

bh =
1
2

ab sin θ

• Area of a circle

A = πr2

• Area of an ellipse

A = πab

A.11 Ĳ Volumes

• Volume of a rectangular prism

V = lwh

• Volume of a cylinder

V = πr2h

• Volume of a cone

V =
1
3

πr2h

• Volume of a sphere

V =
4
3

πr3

A.12 Ĳ Powers

In the following, x and y are arbitrary real numbers, and q is an arbitrary constant that is
strictly bigger than zero.

• q0 = 1
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• qx+y = qxqy, qx´y = qx

qy

• q´x = 1
qx

•
(
qx)y

= qxy

• lim
xÑ8

qx = 8, lim
xÑ´8

qx = 0 if q ą 1

• lim
xÑ8

qx = 0, lim
xÑ´8

qx = 8 if 0 ă q ă 1

• The graph of 2x is given below. The graph of qx, for any q ą 1, is similar.

x

y

1 2 3−1−2−3

1
2

4

6

y = 2x

A.13 Ĳ Logarithms

In the following, x and y are arbitrary real numbers that are strictly bigger than 0, and p
and q are arbitrary constants that are strictly bigger than one.

• qlogq x = x, logq
(
qx) = x

• logq x =
logp x
logp q

• logq 1 = 0, logq q = 1

• logq(xy) = logq x + logq y

• logq
( x

y
)
= logq x ´ logq y

• logq
( 1

y
)
= ´ logq y,

• logq(xy) = y logq x

• lim
xÑ8

logq x = 8, lim
xÑ0+

logq x = ´8

• The graph of log10 x is given below. The graph of logq x, for any q ą 1, is similar.

377



HIGH SCHOOL MATERIAL A.14 YOU SHOULD BE ABLE TO DERIVE

x

y

1 5 10 15

0.5

1.0

−0.5

−1.0

y = log10 x

A.14 Ĳ Highschool Material You Should be Able to Derive

• Graphs of csc θ, sec θ and cot θ:

csc θ sec θ cot θ

´π ´ π
2

π
2

π 3π
2

2π
´1

1

´π ´ π
2

π
2

π 3π
2

2π
´1

1

´π ´ π
2

π
2

π 3π
2

2π

• More Pythagoras

sin2 θ + cos2 θ = 1
divide by cos2 θ
ÞÝÝÝÝÝÝÝÝÝÝÑ tan2 θ + 1 = sec2 θ

sin2 θ + cos2 θ = 1
divide by sin2 θ
ÞÝÝÝÝÝÝÝÝÝÑ 1 + cot2 θ = csc2 θ

• Sine — double angle (set β = α in sine angle addition formula)

sin(2α) = 2 sin(α) cos(α)

• Cosine — double angle (set β = α in cosine angle addition formula)

cos(2α) = cos2(α) ´ sin2(α)

= 2 cos2(α) ´ 1 (use sin2(α) = 1 ´ cos2(α))

= 1 ´ 2 sin2(α) (use cos2(α) = 1 ´ sin2(α))

• Composition of trigonometric and inverse trigonometric functions:

cos(arcsin x) =
a

1 ´ x2 sec(arctan x) =
a

1 + x2

and similar expressions.
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Appendix B

B.1 Ĳ Theorems about Triangles

B.1.1 §§ Thales’ Theorem

We want to get at right-angled triangles. A classic construction for this is to draw a triangle
inside a circle, so that all three corners lie on the circle and the longest side forms the
diameter of the circle. See the figure below in which we have scaled the circle to have
radius 1 and the triangle has longest side 2.

Thales theorem states that the angle at C is always a right-angle. The proof is quite
straight-forward and relies on two facts:

• the angles of a triangle add to π, and

• the angles at the base of an isosceles triangle are equal.

So we split the triangle ABC by drawing a line from the centre of the circle to C. This
creates two isosceles triangles OAC and OBC. Since they are isosceles, the angles at their
bases α and β must be equal (as shown). Adding the angles of the original triangle now
gives

π = α + (α + β) + β = 2(α + β)

So the angle at C = π ´ (α + β) = π/2.
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B.1.2 §§ Pythagoras

Since trigonometry, at its core, is the study of lengths and angles in right-angled triangles,
we must include a result you all know well, but likely do not know how to prove.

The lengths of the sides of any right-angled triangle are related by the famous result due
to Pythagoras

c2 = a2 + b2.

There are many ways to prove this, but we can do so quite simply by studying the follow-
ing diagram:

We start with a right-angled triangle with sides labeled a, b and c. Then we construct a
square of side-length a + b and draw inside it 4 copies of the triangle arranged as shown
in the centre of the above figure. The area in white is then a2 + b2. Now move the triangles
around to create the arrangement shown on the right of the above figure. The area in white
is bounded by a square of side-length c and so its area is c2. The area of the outer square
didn’t change when the triangles were moved, nor did the area of the triangles, so the
white area cannot have changed either. This proves a2 + b2 = c2.

B.2 Ĳ Trigonometry

B.2.1 §§ Angles — Radians vs Degrees

For mathematics, and especially in calculus, it is much better to measure angles in units
called radians rather than degrees. By definition, an arc of length θ on a circle of radius
one subtends an angle of θ radians at the centre of the circle.
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The circle on the left has radius 1, and the arc swept out by an angle of θ radians has
length θ. Because a circle of radius one has circumference 2π we have

2π radians = 360˝ π radians = 180˝ π/2 radians = 90˝

π

3
radians = 60˝ π

4
radians = 45˝ π

6
radians = 30˝

More generally, consider a circle of radius r. Let L(θ) denote the length of the arc swept
out by an angle of θ radians and let A(θ) denote the area of the sector (or wedge) swept
out by the same angle. Since the angle sweeps out the fraction θ/2π of a whole circle, we
have

L(θ) = 2πr ¨
θ

2π
= θr and

A(θ) = πr2
¨

θ

2π
=

θ

2
r2

B.2.2 §§ Trig Function Definitions

The trigonometric functions are defined as ratios of the lengths of the sides of a right-
angle triangle as shown in the left of the diagram below . These ratios depend only on the
angle θ.

The trigonometric functions sine, cosine and tangent are defined as ratios of the lengths
of the sides

sin θ =
opposite

hypotenuse
cos θ =

adjacent
hypotenuse

tan θ =
opposite
adjacent

=
sin θ

cos θ
.
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These are frequently abbreviated as

sin θ =
o
h

cos θ =
a
h

tan θ =
o
a

which gives rise to the mnemonic

SOH CAH TOA

If we scale the triangle so that they hypotenuse has length 1 then we obtain the diagram
on the right. In that case, sin θ is the height of the triangle, cos θ the length of its base and
tan θ is the length of the line tangent to the circle of radius 1 as shown.

Since the angle 2π sweeps out a full circle, the angles θ and θ + 2π are really the same.

Hence all the trigonometric functions are periodic with period 2π. That is

sin(θ + 2π) = sin(θ) cos(θ + 2π) = cos(θ) tan(θ + 2π) = tan(θ)

The plots of these functions are shown below

sin θ cos θ tan θ

´π ´ π
2

π
2

π 3π
2

2π

´1

1

´π ´ π
2

π
2

π 3π
2

2π

´1

1

´π ´ π
2

π
2

π 3π
2

2π

The reciprocals (cosecant, secant and cotangent) of these functions also play important
roles in trigonometry and calculus:

csc θ =
1

sin θ
=

h
o

sec θ =
1

cos θ
=

h
a

cot θ =
1

tan θ
=

cos θ

sin θ
=

a
o

The plots of these functions are shown below
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csc θ sec θ cot θ

´π ´ π
2

π
2

π 3π
2

2π
´1

1

´π ´ π
2

π
2

π 3π
2

2π
´1

1

´π ´ π
2

π
2

π 3π
2

2π

These reciprocal functions also have geometric interpretations:

Since these are all right-angled triangles we can use Pythagoras to obtain the following
identities:

sin2 θ + cos2 θ = 1 tan2 θ + 1 = sec2 θ 1 + cot2 θ = csc2 θ

Of these it is only necessary to remember the first

sin2 θ + cos2 θ = 1

The second can then be obtained by dividing this by cos2 θ and the third by dividing by
sin2 θ.

B.2.3 §§ Important Triangles

Computing sine and cosine is non-trivial for general angles — we need Taylor series (or
similar tools) to do this. However there are some special angles (usually small integer
fractions of π) for which we can use a little geometry to help. Consider the following two
triangles.
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The first results from cutting a square along its diagonal, while the second is obtained by
cutting an equilateral triangle from one corner to the middle of the opposite side. These,
together with the angles 0, π

2 and π give the following table of values

θ sin θ cos θ tan θ csc θ sec θ cot θ

0 rad 0 1 0 DNE 1 DNE
π
2 rad 1 0 DNE 1 DNE 0

π rad 0 -1 0 DNE -1 DNE
π
4 rad 1?

2
1?
2

1
?

2
?

2 1
π
6 rad 1

2

?
3

2
1?
3

2 2?
3

?
3

π
3 rad

?
3

2
1
2

?
3 2?

3
2 1?

3

B.2.4 §§ Some More Simple Identities

Consider the figure below

The pair triangles on the left shows that there is a simple relationship between trigono-
metric functions evaluated at θ and at ´θ:

sin(´θ) = ´ sin(θ) cos(´θ) = cos(θ)

That is — sine is an odd function, while cosine is even. Since the other trigonometric
functions can be expressed in terms of sine and cosine we obtain

tan(´θ) = ´ tan(θ) csc(´θ) = ´ csc(θ) sec(´θ) = sec(θ) cot(´θ) = ´ cot(θ)
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Now consider the triangle on the right — if we consider the angle π
2 ´ θ the side-lengths of

the triangle remain unchanged, but the roles of “opposite” and “adjacent” are swapped.
Hence we have

sin
(

π
2 ´ θ

)
= cos θ cos

(
π
2 ´ θ

)
= sin θ

Again these imply that

tan
(

π
2 ´ θ

)
= cot θ csc

(
π
2 ´ θ

)
= sec θ sec

(
π
2 ´ θ

)
= csc θ cot

(
π
2 ´ θ

)
= tan θ

We can go further. Consider the following diagram:

This implies that

sin(π ´ θ) = sin(θ) cos(π ´ θ) = ´ cos(θ)
sin(π + θ) = ´ sin(θ) cos(π + θ) = ´ cos(θ)

From which we can get the rules for the other four trigonometric functions.

B.2.5 §§ Identities — Adding Angles

We wish to explain the origins of the identity

sin(α + β) = sin(α) cos(β) + cos(α) sin(β).

A very geometric demonstration uses the figure below and an observation about areas.

• The left-most figure shows two right-angled triangles with angles α and β and both
with hypotenuse length 1.
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• The next figure simply rearranges the triangles — translating and rotating the lower
triangle so that it lies adjacent to the top of the upper triangle.

• Now scale the lower triangle by a factor of q so that edges opposite the angles α and
β are flush. This means that q cos β = cos α. ie

q =
cos α

cos β

Now compute the areas of these (blue and red) triangles

Ared =
1
2

q2 sin β cos β

Ablue =
1
2

sin α cos α

So twice the total area is

2Atotal = sin α cos α + q2 sin β cos β

• But we can also compute the total area using the rightmost triangle:

2Atotal = q sin(α + β)

Since the total area must be the same no matter how we compute it we have

q sin(α + β) = sin α cos α + q2 sin β cos β

sin(α + β) =
1
q

sin α cos α + q sin β cos β

=
cos β

cos α
sin α cos α +

cos α

cos β
sin β cos β

= sin α cos β + cos α sin β

as required.
We can obtain the angle addition formula for cosine by substituting α ÞÑ π/2 ´ α and

β ÞÑ ´β into our sine formula:

sin(α + β) = sin(α) cos(β) + cos(α) sin(β) becomes
sin(π/2 ´ α ´ β)
looooooooomooooooooon

cos(α+β)

= sin(π/2 ´ α)
looooooomooooooon

cos(α)

cos(´β) + cos(π/2 ´ α)
looooooomooooooon

sin(α)

sin(´β)

cos(α + β) = cos(α) cos(β) ´ sin(α) sin(β)

where we have used sin(π/2 ´ θ) = cos(θ) and cos(π/2 ´ θ) = sin(θ).
It is then a small step to the formulas for the difference of angles. From the relation

sin(α + β) = sin(α) cos(β) + cos(α) sin(β)

we can substitute β ÞÑ ´β and so obtain

sin(α ´ β) = sin(α) cos(´β) + cos(α) sin(´β)

= sin(α) cos(β) ´ cos(α) sin(β)
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The formula for cosine can be obtained in a similar manner. To summarise

sin(α ˘ β) = sin(α) cos(β) ˘ cos(α) sin(β)

cos(α ˘ β) = cos(α) cos(β) ¯ sin(α) sin(β)

The formulas for tangent are a bit more work, but

tan(α + β) =
sin(α + β)

cos(α + β)

=
sin(α) cos(β) + cos(α) sin(β)

cos(α) cos(β) ´ sin(α) sin(β)

=
sin(α) cos(β) + cos(α) sin(β)

cos(α) cos(β) ´ sin(α) sin(β)
¨

sec(α) sec(β)

sec(α) sec(β)

=
sin(α) sec(α) + sin(β) sec(β)

1 ´ sin(α) sec(α) sin(β) sec(β)

=
tan(α) + tan(β)

1 ´ tan(α) tan(β)

and similarly we get

tan(α ´ β) =
tan(α) ´ tan(β)

1 + tan(α) tan(β)

B.2.6 §§ Identities — Double-angle Formulas

If we set β = α in the angle-addition formulas we get

sin(2α) = 2 sin(α) cos(α)

cos(2α) = cos2(α) ´ sin2(α)

= 2 cos2(α) ´ 1 since sin2 θ = 1 ´ cos2 θ

= 1 ´ 2 sin2(α) since cos2 θ = 1 ´ sin2 θ

tan(2α) =
2 tan(α)

1 ´ tan2(α)

=
2

cot(α) ´ tan(α)
divide top and bottom by tan(α)

B.2.7 §§ Identities — Extras

§§§ Sums to Products

Consider the identities

sin(α + β) = sin(α) cos(β) + cos(α) sin(β) sin(α ´ β) = sin(α) cos(β) ´ cos(α) sin(β)

If we add them together some terms on the right-hand side cancel:

sin(α + β) + sin(α ´ β) = 2 sin(α) cos(β).
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If we now set u = α + β and v = α ´ β (i.e. α = u+v
2 , β = u´v

2 ) then

sin(u) + sin(v) = 2 sin
(

u + v
2

)
cos

(u ´ v
2

)

This transforms a sum into a product. Similarly:

sin(u) ´ sin(v) = 2 sin
(u ´ v

2

)
cos

(
u + v

2

)

cos(u) + cos(v) = 2 cos
(

u + v
2

)
cos

(u ´ v
2

)

cos(u) ´ cos(v) = ´2 sin
(

u + v
2

)
sin
(u ´ v

2

)

§§§ Products to Sums

Again consider the identities

sin(α + β) = sin(α) cos(β) + cos(α) sin(β) sin(α ´ β) = sin(α) cos(β) ´ cos(α) sin(β)

and add them together:

sin(α + β) + sin(α ´ β) = 2 sin(α) cos(β).

Then rearrange:

sin(α) cos(β) =
sin(α + β) + sin(α ´ β)

2

In a similar way, start with the identities

cos(α + β) = cos(α) cos(β) ´ sin(α) sin(β) cos(α ´ β) = cos(α) cos(β) + sin(α) sin(β)

If we add these together we get

2 cos(α) cos(β) = cos(α + β) + cos(α ´ β)

while taking their difference gives

2 sin(α) sin(β) = cos(α ´ β) ´ cos(α + β)

Hence

sin(α) sin(β) =
cos(α ´ β) ´ cos(α + β)

2

cos(α) cos(β) =
cos(α ´ β) + cos(α + β)

2
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B.3 Ĳ Inverse Trigonometric Functions

In order to construct inverse trigonometric functions we first have to restrict their domains
so as to make them one-to-one (or injective). We do this as shown below

sin θ cos θ tan θ

Domain: ´π
2 ď θ ď π

2 Domain: 0 ď θ ď π Domain: ´π
2 ă θ ă π

2

Range: ´1 ď sin θ ď 1 Range: ´1 ď cos θ ď 1 Range: all real numbers

´ π
2

π
2

´1

1

π
2

π

´1

1

´π ´ π
2

arcsin x arccos x arctan x

Domain: ´1 ď x ď 1 Domain: ´1 ď x ď 1 Domain: all real numbers

Range: ´π
2 ď arcsin x ď π

2 Range: 0 ď arccos x ď π Range: ´π
2 ă arctan x ă π

2

´1 1

´ π
2

π
2

´1 1

π
2

π

´ π
2

π
2

Since these functions are inverses of each other we have

arcsin(sin θ) = θ ´
π

2
ď θ ď

π

2
arccos(cos θ) = θ 0 ď θ ď π

arctan(tan θ) = θ ´
π

2
ď θ ď

π

2
and also

sin(arcsin x) = x ´1 ď x ď 1
cos(arccos x) = x ´1 ď x ď 1
tan(arctan x) = x any real x
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We can read other combinations of trig functions and their inverses, like, for example,
cos(arcsin x), off of triangles like

θ

1 x

√
1− x2

We have chosen the hypotenuse and opposite sides of the triangle to be of length 1 and x,
respectively, so that sin(θ) = x. That is, θ = arcsin x. We can then read off of the triangle
that

cos(arcsin x) = cos(θ) =
a

1 ´ x2

We can reach the same conclusion using trig identities, as follows.

• Write arcsin x = θ. We know that sin(θ) = x and we wish to compute cos(θ). So we
just need to express cos(θ) in terms of sin(θ).

• To do this we make use of one of the Pythagorean identities

sin2 θ + cos2 θ = 1

cos θ = ˘

a

1 ´ sin2 θ

• Thus

cos(arcsin x) = cos θ = ˘

a

1 ´ sin2 θ

• To determine which branch we should use we need to consider the domain and
range of arcsin x:

Domain: ´ 1 ď x ď 1 Range: ´
π

2
ď arcsin x ď

π

2

Thus we are applying cosine to an angle that always lies between ´π
2 and π

2 . Cosine
is non-negative on this range. Hence we should take the positive branch and

cos(arcsin x) =
a

1 ´ sin2 θ =
b

1 ´ sin2(arcsin x)

=
a

1 ´ x2

In a very similar way we can simplify tan(arccos x).

• Write arccos x = θ, and then

tan(arccos x) = tan θ =
sin θ

cos θ
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• Now the denominator is easy since cos θ = cos arccos x = x.

• The numerator is almost the same as the previous computation.

sin θ = ˘

a

1 ´ cos2 θ

= ˘

a

1 ´ x2

• To determine which branch we again consider domains and and ranges:

Domain: ´ 1 ď x ď 1 Range: 0 ď arccos x ď π

Thus we are applying sine to an angle that always lies between 0 and π. Sine is
non-negative on this range and so we take the positive branch.

• Putting everything back together gives

tan(arccos x) =
?

1 ´ x2

x

Completing the 9 possibilities gives:

sin(arcsin x) = x sin(arccos x) =
a

1 ´ x2 sin(arctan x) =
x

?
1 + x2

cos(arcsin x) =
a

1 ´ x2 cos(arccos x) = x cos(arctan x) =
1

?
1 + x2

tan(arcsin x) =
x

?
1 ´ x2

tan(arccos x) =
?

1 ´ x2

x
tan(arctan x) = x

B.4 Ĳ Cosine and Sine Laws

B.4.1 §§ Cosine Law or Law of Cosines

The cosine law says that, if a triangle has sides of length a, b and c and the angle opposite
the side of length c is γ, then

c2 = a2 + b2
´ 2ab cos γ

Observe that, when γ = π
2 , this reduces to, (surpise!) Pythagoras’ theorem c2 = a2 + b2.

Let’s derive the cosine law.
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Consider the triangle on the left. Now draw a perpendicular line from the side of
length c to the opposite corner as shown. This demonstrates that

c = a cos β + b cos α

Multiply this by c to get an expression for c2:

c2 = ac cos β + bc cos α

Doing similarly for the other corners gives

a2 = ac cos β + ab cos γ

b2 = bc cos α + ab cos γ

Now combining these:

a2 + b2
´ c2 = (bc ´ bc) cos α + (ac ´ ac) cos β + 2ab cos γ

= 2ab cos γ

as required.

B.4.2 §§ Sine Law or Law of Sines

The sine law says that, if a triangle has sides of length a, b and c and the angles opposite
those sides are α, β and γ, then

a
sin α

=
b

sin β
=

c
sin γ

.

This rule is best understood by computing the area of the triangle using the formula A =
1
2 ab sin θ of Appendix A.10. Doing this three ways gives

2A = bc sin α

2A = ac sin β

2A = ab sin γ

Dividing these expressions by abc gives

2A
abc

=
sin α

a
=

sin β

b
=

sin γ

c

as required.
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B.5 Ĳ Circles, cones and spheres

B.5.1 §§ Where Does the Formula for the Area of a Circle Come From?

Typically when we come across π for the first time it is as the ratio of the circumference of
a circle to its diameter

π =
C
d
=

C
2r

Indeed this is typically the first definition we see of π. It is easy to build an intuition that
the area of the circle should be propotional to the square of its radius. For example we
can draw the largest possible square inside the circle (an inscribed square) and the smallest
possible square outside the circle (a circumscribed square):

The smaller square has side-length
?

2r and the longer has side-length 2r. Hence

2r2
ď A ď 4r2 or 2 ď

A
r2 ď 4

That is, the area of the circle is between 2 and 4 times the square of the radius. What
is perhaps less obvious (if we had not been told this in school) is that the constant of
propotionality for area is also π:

π =
A
r2 .

We will show this using Archimedes’ proof. He makes use of these inscribed and
circumscribed polygons to make better and better approximations of the circle. The steps
of the proof are somewhat involved and the starting point is to rewrite the area of a circle
as

A =
1
2

Cr

where C is (still) the circumference of the circle. This suggests that this area is the same as
that of a triangle of height r and base length C

T =
1
2

Cr
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Archimedes’ proof then demonstrates that indeed this triangle and the circle have the
same area. It relies on a “proof by contradiction” — showing that T ă A and T ą A
cannot be true and so the only possibility is that A = T.

We will first show that T ă A cannot happen. Construct an n-sided “inscribed” poly-
gon as shown below:

Let pn be the inscribed polygon as shown.

We need 4 steps.

1. The area of pn is smaller than that of the circle — this follows since we can construct
pn by cutting slices from the circle.

2. Let En be the difference between the area of the circle and pn: En = A ´ A(pn) (see
the left of the previous figure). By the previous point we know En ą 0. Now as we
increase the number of sides, this difference becomes smaller. To be more precise,
we will now show that

E2n ď
1
2

En.

The error En is made up of n “lobes”. In the centre-left of the previous figure we
draw one such lobe and surround it by a rectangle of dimensions a ˆ 2b — we could
determine these more precisely using a little trigonometry, but it is not necessary.

This diagram shows the lobe is smaller than the rectangle of base 2b and height a
Since there are n copies of the lobe, we have

En ď n ˆ 2ab rewrite as
En

2
ď nab

Now draw in the polygon p2n and consider the associated “error” E2n. If we focus
on the two lobes shown then we see that the area of these two new lobes is equal to
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that of the old lobe (shown in centre-left) minus the area of the triangle with base 2b
and height a (drawn in purple). Since there are n copies of this picture we have

E2n = En ´ nab now use that nab ě En/2

ď En ´
En

2
=

En

2

3. The area of pn is smaller than T. To see this decompose pn into n isosceles triangles.
Each of these has base shorter than C/n; the straight line is shorter than the corre-
sponding arc — though strictly speaking we should prove this. The height of each
triangle is shorter than r. Thus

A(pn) = n ˆ
1
2

(base) ˆ (height)

ď n ˆ
Cr
2n

= T

4. If we assume that T ă A, then A ´ T = d where d is some positive number. However
we know from point 2 that we can make n large enough so that En ă d (each time
we double n we halve the error). But now we have a contradiction to step 3, since
we have just shown that

En = A ´ A(pn) ă d = A ´ T which implies that
A(pn) ą T.

Thus we cannot have T ă A.
If we now assume that T ą A we will get a similar contradiction by a similar construc-

tion. Now we use regular n-sided circumscribed polygons, Pn.

The proof can be broken into 4 similar steps.

1. The area of Pn is greater than that of the circle — this follows since we can construct
the circle by trimming the polygon Pn.
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2. Let En be the difference between the area of the polygon and the circle: En = A(Pn)´

A (see the left of the previous figure). By the previous point we know En ą 0. Now
as we increase the number of sides, this difference becomes smaller. To be more
precise, we will now show

E2n ď
1
2

En.

The error En is made up of n “lobes”. In the centre-left of the previous figure we
draw one such lobe. Let Ln denote the area of one of these lobes, so En = nLn. In
the centre of the previous figure we have labelled this lobe carefully and also shown
how it changes when we create the polygon P2n. In particular, the original lobe is
bounded by the straight lines a⃗d, a⃗ f and the arc yf bd. We create P2n from Pn by cutting
away the corner triangle △aec. Accordingly the lines e⃗c and b⃗a are orthogonal and
the segments |bc| = |cd|.

By the construction of P2n from Pn, we have

2L2n = Ln ´ A(△aec) or equivalently L2n =
1
2

Ln ´ A(△abc)

And additionally

L2n ď A(△bcd)

Now consider the triangle △abd (centre-right of the previous figure) and the two
triangles within it △abc and △bcd. We know that a⃗b and c⃗b form a right-angle.
Consequently a⃗c is the hypotenuse of a right-angled triangle, so |ac| ą |bc| = |cd|. So
now, the triangles △abc and △bcd have the same heights, but the base of a⃗c is longer
than c⃗d. Hence the area of △abc is strictly larger than that of △bcd.

Thus we have

L2n ď A(△bcd) ă A(△abc)

But now we can write

L2n =
1
2

Ln ´ A(△abc) ă
1
2

Ln ´ L2n rearrange

2L2n ă
1
2

Ln there are n such lobes, so

2nL2n ă
n
2

Ln since En = nLn, we have

E2n ă
1
2

En which is what we wanted to show.

3. The area of Pn is greater than T. To see this decompose Pn into n isosceles triangles.
The height of each triangle is r, while the base of each is longer than C/n (this is a
subtle point and its proof is equivalent to showing that tan θ ą θ). Thus

A(Pn) = n ˆ
1
2

(base) ˆ (height)

ě n ˆ
Cr
2n

= T
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4. If we assume that T ą A, then T ´ A = d where d is some positive number. However
we know from point 2 that we can make n large enough so that En ă d (each time
we double n we halve the error). But now we have a contradiction to step 3, since
we have just shown that

En = A(Pn) ´ A ă d = T ´ A which implies that
A(Pn) ă T.

Thus we cannot have T ą A. The only possibility that remains is that T = A.

B.5.2 §§ Where Do These Volume Formulas Come From?

We can establish the volumes of cones and spheres from the formula for the volume of a
cylinder and a little work with limits and some careful summations. We first need a few
facts.

• Every square number can be written as a sum of consecutive odd numbers. More
precisely

n2 = 1 + 3 + ¨ ¨ ¨ + (2n ´ 1)

• The sum of the first n positive integers is 1
2 n(n + 1). That is

1 + 2 + 3 + ¨ ¨ ¨ + n =
1
2

n(n + 1)

• The sum of the squares of the first n positive integers is 1
6 n(n + 1)(2n + 1).

12 + 22 + 32 + ¨ ¨ ¨ + n2 =
1
6

n(n + 1)(2n + 1)

We will not give completely rigorous proofs of the above identities (since we are not going
to assume that the reader knows mathematical induction), rather we will explain them
using pictorial arguments. The first two of these we can explain by some quite simple
pictures:

We see that we can decompose any square of unit-squares into a sequence of strips, each
of which consists of an odd number of unit-squares. This is really just from the fact that

n2
´ (n ´ 1)2 = 2n ´ 1
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Similarly, we can represent the sum of the first n integers as a triangle of unit squares
as shown. If we make a second copy of that triangle and arrange it as shown, it gives a
rectangle of dimensions n by n + 1. Hence the rectangle, being exactly twice the size of
the original triangle, contains n(n + 1) unit squares.

The explanation of the last formula takes a little more work and a carefully constructed
picture:

Let us break these pictures down step by step

• Leftmost represents the sum of the squares of the first n integers.

• Centre — We recall from above that each square number can be written as a sum of
consecutive odd numbers, which have been represented as coloured bands of unit-
squares.

• Make three copies of the sum and arrange them carefully as shown. The first and
third copies are obvious, but the central copy is rearranged considerably; all bands
of the same colour have the same length and have been arranged into rectangles as
shown.

Putting everything from the three copies together creates a rectangle of dimensions
(2n + 1) ˆ (1 + 2 + 3 + ¨ ¨ ¨ + n).

We know (from above) that 1 + 2 + 3 + ¨ ¨ ¨ + n = 1
2 n(n + 1) and so

(12 + 22 + ¨ ¨ ¨ + n2) =
1
3

ˆ
1
2

n(n + 1)(2n + 1)

as required.
Now we can start to look at volumes. Let us start with the volume of a cone; con-

sider the figure below. We bound the volume of the cone above and below by stacks of
cylinders. The cross-sections of the cylinders and cone are also shown.
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To obtain the bounds we will construct two stacks of n cylinders, C1, C2, . . . , Cn. Each
cylinder has height h/n and radius that varies with height. In particular, we define cylin-
der Ck to have height h/n and radius k ˆ r/n. This radius was determined using similar
triangles so that cylinder Cn has radius r. Now cylinder Ck has volume

Vk = π ˆ radius2
ˆ height = π

(
kr
n

)2

¨
h
n

=
πr2h

n3 k2

We obtain an upper bound by stacking cylinders C1, C2, . . . , Cn as shown. This object
has volume

V = V1 + V2 + . . . Vn

=
πr2h

n3

(
12 + 22 + 32 + ¨ ¨ ¨ + n2

)

=
πr2h

n3 ¨
n(n + 1)(2n + 1)

6

A similar lower bound is obtained by stacking cylinders C1, . . . , Cn´1 which gives a vol-
ume of

V = V1 + V2 + . . . Vn´1

=
πr2h

n3

(
12 + 22 + 32 + ¨ ¨ ¨ + (n ´ 1)2

)

=
πr2h

n3 ¨
(n ´ 1)(n)(2n ´ 1)

6

Thus the true volume of the cylinder is bounded between

πr2h
n3 ¨

(n ´ 1)(n)(2n ´ 1)
6

ď correct volume ď
πr2h

n3 ¨
n(n + 1)(2n + 1)

6

399



ORIGIN OF TRIG, AREA AND VOLUME FORMULAS B.5 CIRCLES, CONES AND SPHERES

We can now take the limit as the number of cylinders, n, goes to infinity. The upper bound
becomes

lim
nÑ8

πr2h
n3

n(n + 1)(2n + 1)
6

=
πr2h

6
lim

nÑ8

n(n + 1)(2n + 1)
n3

=
πr2h

6
lim

nÑ8

(1 + 1/n)(2 + 1/n)
1

=
πr2h

6
ˆ 2

=
πr2h

3

The other limit is identical, so by the squeeze theorem we have

Volume of cone =
1
3

πr2h

Now the sphere — though we will do the analysis for a hemisphere of radius R. Again
we bound the volume above and below by stacks of cylinders. The cross-sections of the
cylinders and cone are also shown.

To obtain the bounds we will construct two stacks of n cylinders, C1, C2, . . . , Cn. Each
cylinder has height R/n and radius that varies with its position in the stack. To describe
the position, define

yk = k ˆ
R
n

That is, yk, is k steps of distance R
n from the top of the hemisphere. Then we set the kth

cylinder, Ck to have height R/n and radius rk given by

r2
k = R2

´ (R ´ yk)
2 = R2

´ R2(1 ´ k/n)2

= R2(2k/n ´ k2/n2)
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as shown in the top-right and bottom-left illustrations. The volume of Ck is then

Vk = π ˆ radius2
ˆ height = π ˆ R2

(
2k/n ´ k2/n2

)
ˆ

R
n

= πR3
¨

(
2k
n2 ´

k2

n3

)

We obtain an upper bound by stacking cylinders C1, C2, . . . , Cn as shown. This object
has volume

V = V1 + V2 + . . . Vn

= πR3
¨

(
2
n2 (1 + 2 + 3 + ¨ ¨ ¨ + n) ´

1
n3

(
12 + 22 + 32 + ¨ ¨ ¨ + n2

))

Now recall from above that

1 + 2 + 3 + ¨ ¨ ¨ + n =
1
2

n(n + 1) 12 + 22 + 32 + ¨ ¨ ¨ + n2 =
1
6

n(n + 1)(2n + 1)

so

V = πR3
¨

(
n(n + 1)

n2 ´
n(n + 1)(2n + 1)

6n3

)

Again, a lower bound is obtained by stacking cylinders C1, . . . , Cn´1 and a similar anal-
ysis gives

V = πR3
¨

(
n(n ´ 1)
(n ´ 1)2 ´

n(n ´ 1)(2n ´ 1)
6(n ´ 1)3

)

Thus the true volume of the hemisphere is bounded between

πR3
¨

(
n(n + 1)

n2 ´
n(n + 1)(2n + 1)

6n3

)
ď correct volume ď πR3

¨

(
n(n + 1)

n2 ´
n(n + 1)(2n + 1)

6n3

)

We can now take the limit as the number of cylinders, n, goes to infinity. The upper bound
becomes

lim
nÑ8

πR3
¨

(
n(n + 1)

n2 ´
n(n + 1)(2n + 1)

6n3

)
= πR3

(
lim

nÑ8

n(n + 1)
n2 ´

n(n + 1)(2n + 1)
6n3

)

= πR3
(

1 ´
2
6

)
=

2
3

πR3.

The other limit is identical, so by the squeeze theorem we have

Volume of hemisphere =
2
3

πR3 and so

Volume of sphere =
4
3

πR3
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Appendix C

To this point you have found solutions to equations almost exclusively by algebraic ma-
nipulation. This is possible only for the artificially simple equations of problem sets and
tests. In the “real world” it is very common to encounter equations that cannot be solved
by algebraic manipulation. For example, you found, by completing a square, that the so-
lutions to the quadratic equation ax2 + bx + c = 0 are x =

(
´ b ˘

?
b2 ´ 4ac

)
/2a. But it is

known that there simply does not exist a corresponding formula for the roots of a general
polynomial of degree five or more. Fortunately, encountering such an equation is not the
end of the world, because usually one does not need to know the solutions exactly. One
only needs to know them to within some specified degree of accuracy. For example, one
rarely needs to know π to more than a few decimal places. There is a whole subject, called
numerical analysis, that concerns using algorithms to solve equations (and perform other
tasks) approximately, to any desired degree of accuracy.

We have already had, in Examples 1.6.14 and 1.6.15, and the lead up to them, a really
quick introduction to the bisection method, which is a crude, but effective, algorithm for
finding approximate solutions to equations of the form f (x) = 0. We shall shortly use
a little calculus to derive a very efficient algorithm for finding approximate solutions to
such equations. But first here is a simple example which provides a review of some of the
basic ideas of root finding and the bisection method.

Example C.0.1

Suppose that we are given some function f (x) and we have to find solutions to the equa-
tion f (x) = 0. To be concrete, suppose that f (x) = 8x3 + 12x2 + 6x ´ 15. How do we go
about solving f (x) = 0? To get a rough idea of the lay of the land, sketch the graph of
f (x). First observe that

• when x is very large and negative, f (x) is very large and negative
• when x is very large and positive, f (x) is very large and positive
• when x = 0, f (x) = f (0) = ´15 ă 0
• when x = 1, f (x) = f (1) = 11 ą 0

• f 1(x) = 24x2 + 24x + 6 = 24
(
x2 + x + 1

4

)
= 24

(
x + 1

2

)2
ě 0 for all x. So f (x)

increases monotonically with x. The graph has a tangent of slope 0 at x = ´1
2 and

tangents of strictly positive slope everywhere else.
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This tells us that the graph of f (x) looks like

x

y

1

y = f(x)

Since f (x) strictly increases1 as x increases, f (x) can take the value zero for at most one
value of x.

• Since f (0) ă 0 and f (1) ą 0 and f is continuous, f (x) must pass through 0 as x
travels from x = 0 to x = 1, by Theorem 1.6.12 (the intermediate value theorem).
So f (x) takes the value zero for some x between 0 and 1. We will often write this as
“the root is x = 0.5 ˘ 0.5” to indicate the uncertainty.

• To get closer to the root, we evaluate f (x) halfway between 0 and 1.

f
(1

2

)
= 8

(1
2

)3
+ 12

(1
2

)2
+ 6
(1

2

)
´ 15 = ´8

Since f
(1

2

)
ă 0 and f (1) ą 0 and f is continuous, f (x) must take the value zero for

some x between 1
2 and 1. The root is 0.75 ˘ 0.25.

• To get still closer to the root, we evaluate f (x) halfway between 1
2 and 1.

f
(3

4

)
= 8

(3
4

)3
+ 12

(3
4

)2
+ 6
(3

4

)
´ 15 = ´3

8

Since f
(3

4

)
ă 0 and f (1) ą 0 and f is continuous, f (x) must take the value zero for

some x between 3
4 and 1. The root is 0.875 ˘ 0.125.

• And so on.

Example C.0.1

The root finding strategy used in Example C.0.1 is called the bisection method. The
bisection method will home in on a root of the function f (x) whenever

• f (x) is continuous ( f (x) need not have a derivative) and

1 By “ f (x) is strictly increasing” we mean that f (a) ă f (b) whenever a ă b. As f 1(x) ą 0 for all
x ‰ ´ 1

2 , f (x) is strictly increasing even as x passes through ´ 1
2 . For example, for any x ą ´ 1

2 , the
mean value theorem (Theorem 2.13.4), tells us that there is a c strictly between ´ 1

2 and x such that
f (x) ´ f

(
´ 1

2
)
= f 1(c)

(
x + 1

2
)

ą 0.
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• you can find two numbers a1 ă b1 with f (a1) and f (b1) being of opposite sign.

Denote by I1 the interval [a1, b1] =
␣

x
ˇ

ˇ a1 ď x ď b1
(

. Once you have found the interval I1,
the bisection method generates a sequence I1, I2, I3, ¨ ¨ ¨ of intervals by the following rule.

Denote by cn = an+bn
2 the midpoint of the interval In = [an, bn]. If f (cn) has the

same sign as f (an), then

In+1 = [an+1, bn+1] with an+1 = cn, bn+1 = bn

and if f (cn) and f (an) have opposite signs, then

In+1 = [an+1, bn+1] with an+1 = an, bn+1 = cn

Equation C.0.2 (bisection method).

This rule was chosen so that f (an) and f (bn) have opposite sign for every n. Since f (x)
is continuous, f (x) has a zero in each interval In. Thus each step reduces the error bars by
a factor of 2. That isn’t too bad, but we can come up with something that is much more
efficient. We just need a little calculus.

C.1 Ĳ Newton’s Method

Newton’s method2, also known as the Newton-Raphson method, is another technique
for generating numerical approximate solutions to equations of the form f (x) = 0. For
example, one can easily get a good approximation to

?
2 by applying Newton’s method

to the equation x2 ´ 2 = 0. This will be done in Example C.1.2, below.
Here is the derivation of Newton’s method. We start by simply making a guess for the

solution. For example, we could base the guess on a sketch of the graph of f (x). Call the
initial guess x1. Next recall, from Theorem 2.3.2, that the tangent line to y = f (x) at x = x1
is y = F(x), where

F(x) = f (x1) + f 1(x1) (x ´ x1)

Usually F(x) is a pretty good approximation to f (x) for x near x1. So, instead of trying to
solve f (x) = 0, we solve the linear equation F(x) = 0 and call the solution x2.

0 = F(x) = f (x1) + f 1(x1) (x ´ x1) ðñ x ´ x1 = ´
f (x1)

f 1(x1)

ðñ x = x2 = x1 ´
f (x1)

f 1(x1)

Note that if f (x) were a linear function, then F(x) would be exactly f (x) and x2 would
solve f (x) = 0 exactly.

2 The algorithm that we are about to describe grew out of a method that Newton wrote about in 1669.
But the modern method incorporates substantial changes introduced by Raphson in 1690 and Simpson
in 1740.
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x

y

x1 x2

y = F (x)

y = f(x)

(x1, f(x1))

Now we repeat, but starting with the (second) guess x2 rather than x1. This gives the
(third) guess x3 = x2 ´

f (x2)
f 1(x2)

. And so on. By way of summary, Newton’s method is

1. Make a preliminary guess x1.

2. Define x2 = x1 ´
f (x1)
f 1(x1)

.

3. Iterate. That is, for each natural number n, once you have computed xn, define

xn+1 = xn ´
f (xn)

f 1(xn)

Equation C.1.1 (Newton’s method).

Example C.1.2
(
Approximating

?
2
)

In this example we compute, approximately, the square root of two. We will of course pre-
tend that we do not already know that

?
2 = 1.41421 ¨ ¨ ¨ . So we cannot find it by solving,

approximately, the equation f (x) = x ´
?

2 = 0. Instead we apply Newton’s method to
the equation

f (x) = x2
´ 2 = 0

Since f 1(x) = 2x, Newton’s method says that we should generate approximate solutions
by iteratively applying

xn+1 = xn ´
f (xn)

f 1(xn)
= xn ´

x2
n ´ 2
2xn

=
xn

2
+

1
xn

We need a starting point. Since 12 = 1 ă 2 and 22 = 4 ą 2, the square root of two must
be between 1 and 2, so let’s start Newton’s method with the initial guess x1 = 1.5. Here
goes3:

x1 = 1.5

x2 =
1
2

x1 +
1
x1

=
1
2
(1.5) +

1
1.5

= 1.416666667

3 The following computations have been carried out in double precision, which is computer speak for
about 15 significant digits. We are displaying each xn rounded to 10 significant digits (9 decimal places).
So each displayed xn has not been impacted by roundoff error, and still contains more decimal places
than are usually needed.
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x3 =
1
2

x2 +
1
x2

=
1
2
(1.416666667) +

1
1.416666667

= 1.414215686

x4 =
1
2

x3 +
1
x3

=
1
2
(1.414215686) +

1
1.414215686

= 1.414213562

x5 =
1
2

x4 +
1
x4

=
1
2
(1.414213562) +

1
1.414213562

= 1.414213562

It looks like the xn’s, rounded to nine decimal places, have stabilized to 1.414213562. So
it is reasonable to guess that

?
2, rounded to nine decimal places, is exactly 1.414213562.

Recalling that all numbers 1.4142135615 ď y ă 1.4142135625 round to 1.414213562, we can
check our guess by evaluating f (1.4142135615) and f (1.4142135625). Since f (1.4142135615) =
´2.5 ˆ 10´9 ă 0 and f (1.4142135625) = 3.6 ˆ 10´10 ą 0 the square root of two must in-
deed be between 1.4142135615 and 1.4142135625.

Example C.1.2

Example C.1.3 (Approximating π)

In this example we compute, approximately, π by applying Newton’s method to the equa-
tion

f (x) = sin x = 0

starting with x1 = 3. Since f 1(x) = cos x, Newton’s method says that we should generate
approximate solutions by iteratively applying

xn+1 = xn ´
f (xn)

f 1(xn)
= xn ´

sin xn

cos xn
= xn ´ tan xn

Here goes

x1 = 3
x2 = x1 ´ tan x1 = 3 ´ tan 3

= 3.142546543
x3 = 3.142546543 ´ tan 3.142546543

= 3.141592653
x4 = 3.141592653 ´ tan 3.141592653

= 3.141592654
x5 = 3.141592654 ´ tan 3.141592654

= 3.141592654

Since f (3.1415926535) = 9.0 ˆ 10´11 ą 0 and f (3.1415926545) = ´9.1 ˆ 10´11 ă 0, π must
be between 3.1415926535 and 3.1415926545. Of course to compute π in this way, we (or
at least our computers) have to be able to evaluate tan x for various values of x. Taylor
expansions can help us do that. See Example 3.4.22.
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Example C.1.3

Example C.1.4 (wild instability)

This example illustrates how Newton’s method can go badly wrong if your initial guess
is not good enough. We’ll try to solve the equation

f (x) = arctan x = 0

starting with x1 = 1.5. (Of course the solution to f (x) = 0 is just x = 0; we chose x1 = 1.5
for demonstration purposes.) Since the derivative f 1(x) = 1

1+x2 , Newton’s method gives

xn+1 = xn ´
f (xn)

f 1(xn)
= xn ´ (1 + x2

n) arctan xn

So4

x1 = 1.5

x2 = 1.5 ´ (1 + 1.52) arctan 1.5 = ´1.69

x3 = ´1.69 ´ (1 + 1.692) arctan(´1.69) = 2.32

x4 = 2.32 ´ (1 + 2.322) arctan(2.32) = ´5.11

x5 = ´5.11 ´ (1 + 5.112) arctan(´5.11) = 32.3

x6 = 32.3 ´ (1 + 32.32) arctan(32.3) = ´1575
x7 = 3, 894, 976

Looks pretty bad! Our xn’s are not settling down at all!

The figure below shows what went wrong. In this figure, y = F1(x) is the tangent line
to y = arctan x at x = x1. Under Newton’s method, this tangent line crosses the x–axis at
x = x2. Then y = F2(x) is the tangent to y = arctan x at x = x2. Under Newton’s method,
this tangent line crosses the x–axis at x = x3. And so on.

The problem arose because the xn’s were far enough from the solution, x = 0, that the
tangent line approximations, while good approximations to f (x) for x « xn, were very

4 Once again, the following computations have been carried out in double precision. This time, it is clear
that the xn’s are growing madly as n increases. So there is not much point to displaying many decimal
places and we have not done so.
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x

y

y = f(x) = tan−1 x

x1

y = F1(x)

(x1,f(x1))

x2

y = F2(x)

(x2,f(x2))

x3

y = F3(x)

x4

y = F4(x)

(x4,f(x4))

poor approximations to f (x) for x « 0. In particular, y = F1(x) (i.e. the tangent line at
x = x1) was a bad enough approximation to y = arctan x for x « 0 that x = x2 (i.e. the
value of x where y = F1(x) crosses the x-axis) is farther from the solution x = 0 than our
original guess x = x1. If we had started with x1 = 0.5 instead of x1 = 1.5, Newton’s
method would have succeeded very nicely:

x1 = 0.5 x2 = ´0.0796 x3 = 0.000335 x4 = ´2.51 ˆ 10´11

Example C.1.4

Example C.1.5 (interest rate)

A car dealer sells a new car for $23,520. He also offers to finance the same car for payments
of $420 per month for five years. What interest rate is this dealer charging?

Solution. By way of preparation, we’ll start with a simpler problem. Suppose that you
will have to make a single $420 payment n months in the future. The simpler problem
is to determine how much money you have to deposit now in an account that pays an
interest rate of 100r% per month, compounded monthly5, in order to be able to make the
$420 payment in n months.

Let’s denote by P the initial deposit. Because the interest rate is 100r% per month,
compounded monthly,

• the first month’s interest is P ˆ r. So at the end of month #1, the account balance is
P + P r = P(1 + r).

• The second month’s interest is [P(1 + r)] ˆ r. So at the end of month #2, the account
balance is P(1 + r) + P(1 + r) r = P(1 + r)2.

• And so on.

5 “Compounded monthly”, means that, each month, interest is paid on the accumulated interest that was
paid in all previous months.
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• So at the end of n months, the account balance is P(1 + r)n.

In order for the balance at the end of n months, P(1 + r)n, to be $420, the initial deposit
has to be P = 420(1 + r)´n. That is what is meant by the statement “The present value6 of
a $420 payment made n months in the future, when the interest rate is 100r% per month,
compounded monthly, is 420(1 + r)´n.”

Now back to the original problem. We will be making 60 monthly payments of $420.
The present value of all 60 payments is7

420(1 + r)´1 + 420(1 + r)´2 + ¨ ¨ ¨ + 420(1 + r)´60 = 420
(1 + r)´1 ´ (1 + r)´61

1 ´ (1 + r)´1

= 420
1 ´ (1 + r)´60

(1 + r) ´ 1
= 420

1 ´ (1 + r)´60

r
The interest rate 100r% being charged by the car dealer is such that the present value of
60 monthly payments of $420 is $23520. That is, the monthly interest rate being charged
by the car dealer is the solution of

23520 = 420
1 ´ (1 + r)´60

r
or 56 =

1 ´ (1 + r)´60

r
or 56r = 1 ´ (1 + r)´60

or 56r(1 + r)60 = (1 + r)60
´ 1

or (1 ´ 56r)(1 + r)60 = 1

Set f (r) = (1 ´ 56r)(1 + r)60 ´ 1. Then

f 1(r) = ´56(1 + r)60 + 60(1 ´ 56r)(1 + r)59

or
f 1(r) =

[
´ 56(1 + r) + 60(1 ´ 56r)

]
(1 + r)59 = (4 ´ 3416r)(1 + r)59

Apply Newton’s method with an initial guess of r1 = .002. (That’s 0.2% per month or
2.4% per year.) Then

r2 = r1 ´
(1 ´ 56r1)(1 + r1)

60 ´ 1
(4 ´ 3416r1)(1 + r1)59 = 0.002344

r3 = r2 ´
(1 ´ 56r2)(1 + r2)

60 ´ 1
(4 ´ 3416r2)(1 + r2)59 = 0.002292

r4 = r3 ´
(1 ´ 56r3)(1 + r3)

60 ´ 1
(4 ´ 3416r3)(1 + r3)59 = 0.002290

r5 = r4 ´
(1 ´ 56r4)(1 + r4)

60 ´ 1
(4 ´ 3416r4)(1 + r4)59 = 0.002290

6 Inflation means that prices of goods (typically) increase with time, and hence $100 now is worth more
than $100 in 10 years time. The term “present value” is widely used in economics and finance to mean
“the current amount of money that will have a specified value at a specified time in the future”. It takes
inflation into account. If the money is invested, it takes into account the rate of return of the investment.
We recommend that the interested reader do some search-engining to find out more.

7 Don’t worry if you don’t know how to evaluate such sums. They are called geometric sums, and will
be covered in the CLP-2 text. (See (1.1.3) in the CLP-2 text.) In any event, you can check that this is
correct, by multiplying the whole equation by 1 ´ (1 + r)´1. When you simplify the left hand side, you
should get the right hand side.
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So the interest rate is 0.229% per month or 2.75% per year.
Example C.1.5

C.2 Ĳ The Error Behaviour of Newton’s Method

Newton’s method usually works spectacularly well, provided your initial guess is reason-
ably close to a solution of f (x) = 0. A good way to select this initial guess is to sketch the
graph of y = f (x). We now explain why “Newton’s method usually works spectacularly
well, provided your initial guess is reasonably close to a solution of f (x) = 0”.

Let r be any solution of f (x) = 0. Then f (r) = 0. Suppose that we have already
computed xn. The error in xn is

ˇ

ˇxn ´ r
ˇ

ˇ. We now derive a formula that relates the error
after the next step,

ˇ

ˇxn+1 ´ r
ˇ

ˇ, to
ˇ

ˇxn ´ r
ˇ

ˇ. We have seen in (3.4.32) that

f (x) = f (xn) + f 1(xn)(x ´ xn) +
1
2

f 2(c)(x ´ xn)
2

for some c between xn and x. In particular, choosing x = r,

0 = f (r) = f (xn) + f 1(xn)(r ´ xn) +
1
2

f 2(c)(r ´ xn)
2 (E1)

Recall that xn+1 is the solution of 0 = f (xn) + f 1(xn)(x ´ xn). So

0 = f (xn) + f 1(xn)(xn+1 ´ xn) (E2)

We need to get an expression for xn+1 ´ r. Subtracting (E2) from (E1) gives

0 = f 1(xn)(r ´ xn+1) +
1
2

f 2(c)(r ´ xn)
2

ùñ xn+1 ´ r =
f 2(c)

2 f 1(xn)
(xn ´ r)2

ùñ
ˇ

ˇxn+1 ´ r
ˇ

ˇ =
| f 2(c)|

2| f 1(xn)|
|xn ´ r|

2

If the guess xn is close to r, then c, which must be between xn and r, is also close to r and
we will have f 2(c) « f 2(r) and f 1(xn) « f 1(r) and

ˇ

ˇxn+1 ´ r
ˇ

ˇ «
| f 2(r)|
2| f 1(r)|

|xn ´ r|
2 (E3)

Even when xn is not close to r, if we know that there are two numbers L, M ą 0 such that
f obeys:

(H1)
ˇ

ˇ f 1(xn)
ˇ

ˇ ě L

(H2)
ˇ

ˇ f 2(c)
ˇ

ˇ ď M

(we’ll see examples of this below) then we will have

ˇ

ˇxn+1 ´ r
ˇ

ˇ ď
M
2L

|xn ´ r|
2 (E4)
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ROOT FINDING C.2 THE ERROR BEHAVIOUR OF NEWTON’S METHOD

Let’s denote by ε1 the error, |x1 ´ r|, of our initial guess. In fact, let’s denote by εn the error,
|xn ´ r|, in xn. Then (E4) says

εn+1 ď
M
2L

ε2
n

In particular

ε2 ď
M
2L

ε2
1

ε3 ď
M
2L

ε2
2 ď

M
2L

(
M
2L

ε2
1

)2

=

(
M
2L

)3

ε4
1

ε4 ď
M
2L

ε2
3 ď

M
2L

[(
M
2L

)3

ε4
1

]2

=

(
M
2L

)7

ε8
1

ε5 ď
M
2L

ε2
4 ď

M
2L

[(
M
2L

)7

ε8
1

]2

=

(
M
2L

)15

ε16
1

By now we can see a pattern forming, that is easily verified by induction8.

εn ď

(
M
2L

)2n´1´1

ε2n´1

1 =
2L
M

(
M
2L

ε1

)2n´1

(E5)

As long as M
2L ε1 ă 1 (which gives us a quantitative idea as to how good our first guess

has to be in order for Newton’s method to work), this goes to zero extremely quickly as n
increases. For example, suppose that M

2L ε1 ď 1
2 . Then

εn ď
2L
M

(
1
2

)2n´1

ď
2L
M

¨

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0.25 if n = 2
0.0625 if n = 3
0.0039 = 3.9 ˆ 10´3 if n = 4
0.000015 = 1.5 ˆ 10´5 if n = 5
0.00000000023 = 2.3 ˆ 10´10 if n = 6
0.000000000000000000054 = 5.4 ˆ 10´20 if n = 7

Each time you increase n by one, the number of zeroes after the decimal place roughly
doubles. You can see why from (E5). Since

(
M
2L

ε1

)2(n+1)´1

=

(
M
2L

ε1

)2n´1ˆ2

=

[(
M
2L

ε1

)2n´1]2

we have, very roughly speaking, εn+1 « ε2
n. This quadratic behaviour is the reason that

Newton’s method is so useful.

8 Mathematical induction is a technique for proving a sequence S1, S2, S3, ¨ ¨ ¨ of statements. That tech-
nique consists of first proving that S1 is true, and then proving that, for any natural number n, if Sn is
true then Sn+1 is true.
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ROOT FINDING C.2 THE ERROR BEHAVIOUR OF NEWTON’S METHOD

Example C.2.1 (Example C.1.2, continued)

Let’s consider, as we did in Example C.1.2, f (x) = x2 ´ 2, starting with x1 = 3
2 . Then

f 1(x) = 2x f 2(x) = 2

Recalling, from (H1) and (H2), that L is a lower bound on | f 1| and M is an upper bound
on | f 2|, we may certainly take M = 2 and if, for example, xn ě 1 for all n (as happened
in Example C.1.2), we may take L = 2 too. While we do not know what r is, we do know
that 1 ď r ď 2 (since f (1) = 11 ´ 2 ă 0 and f (2) = 22 ´ 2 ą 0). As we took x1 = 3

2 , we
have ε1 = |x1 ´ r| ď 1

2 , so that M
2L ε1 ď 1

4 and

εn+1 ď
2L
M

(
M
2L

ε1

)2n´1

ď 2
(

1
4

)2n´1

(E6)

This tends to zero very quickly as n increases. Furthermore this is an upper bound on
the error and not the actual error. In fact (E6) is a very crude upper bound. For example,
setting n = 3 gives the bound

ε4 ď 2
(

1
4

)22

= 7 ˆ 10´3

and we saw in Example C.1.2 that the actual error in x4 was smaller than 5 ˆ 10´10.
Example C.2.1

Example C.2.2 (Example C.1.3, continued)

Let’s consider, as we did in Example C.1.3, f (x) = sin x, starting with x1 = 3. Then

f 1(x) = cos x f 2(x) = ´ sin x

As | ´ sin x| ď 1, we may certainly take M = 1. In Example C.1.3, all xn’s were between 3
and 3.2. Since (to three decimal places)

sin(3) = 0.141 ą 0 sin(3.2) = ´0.058 ă 0

the IVT (intermediate value theorem) tells us that 3 ă r ă 3.2 and ε1 = |x1 ´ r| ă 0.2.
So r and all xn’s and hence all c’s lie in the interval (3, 3.2). Since

´0.9990 = cos(3) ă cos c ă cos(3.2) = ´0.9983

we necessarily have
ˇ

ˇ f 1(c)
ˇ

ˇ =
ˇ

ˇ cos c
ˇ

ˇ ě 0.9 and we may take L = 0.9. So

εn+1 ď
2L
M

(
M
2L

ε1

)2n´1

ď
2 ˆ 0.9

1

(
1

2 ˆ 0.9
0.2
)2n´1

ď 2
(

1
9

)2n´1

This tends to zero very quickly as n increases.
Example C.2.2
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We have now seen two procedures for finding roots of a function f (x) — the bisection
method (which does not use the derivative of f (x), but which is not very efficient) and
Newton’s method (which does use the derivative of f (x), and which is very efficient).
In fact, there is a whole constellation of other methods9 and the interested reader should
search engine their way to, for example, Wikipedia’s article on root finding algorithms.
Here, we will just mention two other methods, one being a variant of the bisection method
and the other being a variant of Newton’s method.

C.3 Ĳ The false position (regula falsi) method

Let f (x) be a continuous function and let a1 ă b1 with f (a1) and f (b1) being of opposite
sign.

As we have seen, the bisection method generates a sequence of intervals In = [an, bn],
n = 1, 2, 3, ¨ ¨ ¨ with, for each n, f (an) and f (bn) having opposite sign (so that, by conti-
nuity, f has a root in In). Once we have In, we choose In+1 based on the sign of f at the
midpoint, an+bn

2 , of In. Since we always test the midpoint, the possible error decreases by
a factor of 2 each step.

The false position method tries to make the whole procedure more efficient by test-
ing the sign of f at a point that is closer to the end of In where the magnitude of f is
smaller. To be precise, we approximate y = f (x) by the equation of the straight line
through

(
an, f (an)

)
and

(
bn, f (bn)

)
.

xan bncn

y = f(x)

y = F (x)

(an, f(an))

(bn, f(bn))

The equation of that straight line is

y = F(x) = f (an) +
f (bn) ´ f (an)

bn ´ an
(x ´ an)

9 What does it say about mathematicians that they have developed so many ways of finding zero?
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ROOT FINDING C.4 THE SECANT METHOD

Then the false position method tests the sign of f (x) at the value of x where F(x) = 0.

F(x) = f (an) +
f (bn) ´ f (an)

bn ´ an
(x ´ an) = 0

ðñ x = an ´
bn ´ an

f (bn) ´ f (an)
f (an) =

an f (bn) ´ bn f (an)

f (bn) ´ f (an)

So once we have the interval In, the false position method generates the interval In+1 by
the following rule.10

Set cn = an f (bn)´bn f (an)
f (bn)´ f (an)

. If f (cn) has the same sign as f (an), then

In+1 = [an+1, bn+1] with an+1 = cn, bn+1 = bn

and if f (cn) and f (an) have opposite signs, then

In+1 = [an+1, bn+1] with an+1 = an, bn+1 = cn

Equation C.3.1 (false position method).

C.4 Ĳ The secant method

Let f (x) be a continuous function. The secant method is a variant of Newton’s method
that avoids the use of the derivative of f (x) — which can be very helpful when dealing
with the derivative is not easy. It avoids the use of the derivative by approximating f 1(x)
by f (x+h)´ f (x)

h for some h. That is, it approximates the tangent line to f at x by a secant
line to f that passes through x. To limit the number of evaluations of f (x) required, it uses
x = xn´1 and x + h = xn. Here is how it works.

Suppose that we have already found xn. Then we denote by y = F(x) the equation of
the (secant) line that passes through

(
xn´1, f (xn´1)

)
and

(
xn, f (xn)

)
and we choose xn+1

to be the value of x where F(x) = 0.

xxn−1 xn xn+1

y = f(x)

y = F (x)

(xn−1, f(xn−1))

(xn, f(xn))

10 The convergence behaviour of the false position method is relatively complicated. So we do not discuss
it here. As always, we invite the interested reader to visit their favourite search engine.
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ROOT FINDING C.4 THE SECANT METHOD

The equation of the secant line is

y = F(x) = f (xn´1) +
f (xn) ´ f (xn´1)

xn ´ xn´1
(x ´ xn´1)

so that xn+1 is determined by

0 = F(xn+1) = f (xn´1) +
f (xn) ´ f (xn´1)

xn ´ xn´1
(xn+1 ´ xn´1)

ðñ xn+1 = xn´1 ´
xn ´ xn´1

f (xn) ´ f (xn´1)
f (xn´1)

or, simplifying,

xn+1 =
xn´1 f (xn) ´ xn f (xn´1)

f (xn) ´ f (xn´1)

Equation C.4.1 (secant method).

Of course, to get started with n = 1, we need two initial guesses, x0 and x1, for the
root.

Example C.4.2
(
Approximating

?
2, again

)

In this example we compute, approximately, the square root of two by applying the secant
method to the equation

f (x) = x2
´ 2 = 0

and we’ll compare the secant method results with the corresponding Newton’s method
results. (See Example C.1.2.)

Since f 1(x) = 2x, (C.1.1) says that, under Newton’s method, we should iteratively
apply

xn+1 = xn ´
f (xn)

f 1(xn)
= xn ´

x2
n ´ 2
2xn

=
xn

2
+

1
xn

while (C.4.1) says that, under the secant method, we should iteratively apply (after a little
simplifying algebra)

xn+1 =
xn´1 f (xn) ´ xn f (xn´1)

f (xn) ´ f (xn´1)
=

xn´1[x2
n ´ 2] ´ xn[x2

n´1 ´ 2]

x2
n ´ x2

n´1

=
xn´1xn[xn ´ xn´1] + 2[xn ´ xn´1]

x2
n ´ x2

n´1

=
xn´1xn + 2
xn´1 + xn

Here are the results, starting Newton’s method with x1 = 4 and starting the secant method
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with x0 = 4, x1 = 3. (So we are giving the secant method a bit of a head start.)

secant method Newton’s method
x0 4
x1 3 4
x2 2 2.25
x3 1.6 1.57
x4 1.444 1.422
x5 1.4161 1.414234
x6 1.414233 1.414213562525
x7 1.414213575 1.414213562373095

For comparison purposes, the square root of 2, to 15 decimal places, is 1.414213562373095.
So the secant method x7 is accurate to 7 decimal places and the Newton’s method x7 is
accurate to at least 15 decimal places.

Example C.4.2

The advantage that the secant method has over Newton’s method is that it does not
use the derivative of f . This can be a substantial advantage, for example when evaluation
of the derivative is computationally difficult or expensive. On the other hand, the above
example suggests that the secant method is not as fast as Newton’s method. The following
section shows that this is indeed the case.

C.5 Ĳ The Error Behaviour of the Secant Method

Let f (x) have two continuous derivatives, and let r be any solution of f (x) = 0. We will
now get a pretty good handle on the error behaviour of the secant method near r.

Denote by ε̃n = xn ´ r the (signed) error in xn and by εn = |xn ´ r| the (absolute) error
in xn. Then, xn = r + ε̃n, and, by (C.4.1),

ε̃n+1 =
xn´1 f (xn) ´ xn f (xn´1)

f (xn) ´ f (xn´1)
´ r

=
[r + ε̃n´1] f (xn) ´ [r + ε̃n] f (xn´1)

f (xn) ´ f (xn´1)
´ r

=
ε̃n´1 f (xn) ´ ε̃n f (xn´1)

f (xn) ´ f (xn´1)

By the Taylor expansion (3.4.32) and the mean value theorem (Theorem 2.13.4),

f (xn) = f (r) + f 1(r)ε̃n +
1
2

f 2(c1)ε̃
2
n

= f 1(r)ε̃n +
1
2

f 2(c1)ε̃
2
n

f (xn) ´ f (xn´1) = f 1(c2)[xn ´ xn´1]

= f 1(c2)[ε̃n ´ ε̃n´1]
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for some c1 between r and xn and some c2 between xn´1 and xn. So, for xn´1 and xn near
r, c1 and c2 also have to be near r and

f (xn) « f 1(r)ε̃n +
1
2

f 2(r)ε̃2
n

f (xn´1) « f 1(r)ε̃n´1 +
1
2

f 2(r)ε̃2
n´1

f (xn) ´ f (xn´1) « f 1(r)[ε̃n ´ ε̃n´1]

and

ε̃n+1 =
ε̃n´1 f (xn) ´ ε̃n f (xn´1)

f (xn) ´ f (xn´1)

«
ε̃n´1[ f 1(r)ε̃n +

1
2 f 2(r)ε̃2

n] ´ ε̃n[ f 1(r)ε̃n´1 +
1
2 f 2(r)ε̃2

n´1]

f 1(r)[ε̃n ´ ε̃n´1]

=
1
2 ε̃n´1ε̃n f 2(r)[ε̃n ´ ε̃n´1]

f 1(r)[ε̃n ´ ε̃n´1]

=
f 2(r)

2 f 1(r)
ε̃n´1ε̃n

Taking absolute values, we have

εn+1 « Kεn´1εn with K =

ˇ

ˇ

ˇ

ˇ

f 2(r)
2 f 1(r)

ˇ

ˇ

ˇ

ˇ

(E7)

We have seen that Newton’s method obeys a similar formula — (E3) says that, when xn is
near r, Newton’s method obeys εn+1 « Kε2

n, also with K =
ˇ

ˇ

ˇ

f 2(r)
2 f 1(r)

ˇ

ˇ

ˇ
. As we shall now see,

the change from ε2
n, in εn+1 « Kε2

n, to εn´1εn, in εn+1 « Kεn´1εn, does have a substantial
impact on the behaviour of εn for large n.

To see the large n behaviour, we now iterate (E7). The formulae will look simpler if we
multiply (E7) by K and write δn = Kεn. Then (E7) becomes δn+1 « δn´1δn (and we have
eliminated K). The first iterations are

δ2 « δ0δ1

δ3 « δ1δ2 « δ0δ2
1

δ4 « δ2δ3 « δ2
0δ3

1

δ5 « δ3δ4 « δ3
0δ5

1

δ6 « δ4δ5 « δ5
0δ8

1

δ7 « δ5δ6 « δ8
0δ13

1

Notice that every δn is of the form δαn
0 δ

βn
1 . Substituting δn = δαn

0 δ
βn
1 into δn+1 « δn´1δn

gives
δ

αn+1
0 δ

βn+1
1 « δ

αn´1
0 δ

βn´1
1 δαn

0 δ
βn
1

and we have
αn+1 = αn´1 + αn βn+1 = βn´1 + βn (E8)
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The recursion rule in (E8) is famous11. The Fibonacci12 sequence (which is 0, 1, 1, 2, 3,
5, 8, 13, ¨ ¨ ¨ ), is defined by

F0 = 0
F1 = 1
Fn = Fn´1 + Fn´2 for n ą 1

So, for n ě 2, αn = Fn´1 and βn = Fn and

δn « δαn
0 δ

βn
1 = δ

Fn´1
0 δFn

1

One of the known properties of the Fibonacci sequence is that, for large n,

Fn «
φn
?

5
where φ =

1 +
?

5
2

« 1.61803

This φ is the golden ratio13. So, for large n,

Kεn = δn « δ
Fn´1
0 δFn

1 « δ
φn´1

?
5

0 δ
φn
?

5
1 = δ

1?
5φ

ˆφn

0 δ
1?
5

ˆφn

1

= dφn
where d = δ

1?
5 φ

0 δ
1?
5

1

« d1.6n

Assuming that 0 ă δ0 = Kε0 ă 1 and 0 ă δ1 = Kε1 ă 1, we will have 0 ă d ă 1.
By way of contrast, for Newton’s method, for large n,

Kεn « d2n
where d = (Kε1)

1/2

As 2n grows quite a bit more quickly than 1.6n (for example, when n=5, 2n = 32 and
1.6n = 10.5, and when n = 10, 2n = 1024 and 1.6n = 110) Newton’s method homes in
on the root quite a bit faster than the secant method, assuming that you start reasonably
close to the root.

11 Plug “Fibonacci sequence in nature” into your search engine of choice.
12 Fibonacci (1170-1250) was an Italian mathematician who was also known as Leonardo of Pisa, Leonardo

Bonacci and Leonardo Biglio Pisano.
13 Also worth a quick trip to your search engine.
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