By the chain rule
\begin{align*}
&\pdiff{G}{t}(\ga,s,t)
= \pdiff{}{t} \Big[F (\gamma + s, \gamma-s, At)\Big]\\
&=\pdiff{F}{x}(\gamma + s, \gamma-s, At)\, \pdiff{}{t}(\gamma + s)
+\pdiff{F}{y}(\gamma + s, \gamma-s, At)\, \pdiff{}{t}(\gamma - s)\\
&\hskip1in
+\pdiff{F}{z}(\gamma + s, \gamma-s, At)\,\pdiff{}{t}(At)\\
&= A\,\pdiff{F}{z}(\gamma + s, \gamma-s, At)
\end{align*}
and
\begin{align*}
&\pdiff{G}{\ga}(\ga,s,t)
= \pdiff{}{\ga} \Big[F (\gamma + s, \gamma-s, At)\Big]\\
&=\pdiff{F}{x}(\gamma + s, \gamma-s, At)\, \pdiff{}{\ga}(\gamma + s)\\
&\hskip1in
+\pdiff{F}{y}(\gamma + s, \gamma-s, At)\, \pdiff{}{\ga}(\gamma - s)\\
&\hskip1in
+\pdiff{F}{z}(\gamma + s, \gamma-s, At)\,\pdiff{}{\ga}(At)\\
&= \pdiff{F}{x}(\gamma + s, \gamma-s, At)
+\pdiff{F}{y}(\gamma + s, \gamma-s, At)
\tag{E1}
\end{align*}
and
\begin{align*}
&\pdiff{G}{s}(\ga,s,t)
= \pdiff{}{s} \Big[F (\gamma + s, \gamma-s, At)\Big]\\
&=\pdiff{F}{x}(\gamma + s, \gamma-s, At)\, \pdiff{}{s}(\gamma + s)\\
&\hskip1in
+\pdiff{F}{y}(\gamma + s, \gamma-s, At)\, \pdiff{}{s}(\gamma - s)\\
&\hskip1in
+\pdiff{F}{z}(\gamma + s, \gamma-s, At)\,\pdiff{}{s}(At)\\
&= \pdiff{F}{x}(\gamma + s, \gamma-s, At)
-\pdiff{F}{y}(\gamma + s, \gamma-s, At)
\tag{E2}
\end{align*}
We can evaluate the second derivatives by applying the chain rule to the four terms on the right hand sides of
\begin{align*}
\frac{\partial^2G}{\partial\ga^2}(\ga,s,t)
&=\pdiff{}{\ga}\Big[\pdiff{G}{\ga}(\ga, s, t)\Big]\\
&
=\color{red}{\pdiff{}{\ga}\Big[\pdiff{F}{x}(\gamma + s, \gamma-s, At)\Big]}
+\color{orange}{\pdiff{}{\ga}\Big[\pdiff{F}{y}(\gamma + s, \gamma-s, At)
\Big]}\\
\frac{\partial^2G}{\partial s^2}(\ga,s,t)
&=\pdiff{}{s}\Big[\pdiff{G}{s}(\ga, s, t)\Big]\\
&
=\color{blue}{\pdiff{}{s}\Big[\pdiff{F}{x}(\gamma + s, \gamma-s, At)\Big]}
-\color{violet}{\pdiff{}{s}\Big[\pdiff{F}{y}(\gamma + s, \gamma-s, At)
\Big]}
\end{align*}
Alternatively, we can observe that replacing \(F\) by \(\pdiff{F}{x}\) in (E1) and (E2) gives
\begin{align*}
&\color{red}{\pdiff{}{\ga}\Big[\pdiff{F}{x}(\gamma + s, \gamma-s, At)\Big]}\\
&\hskip0.5in=\color{red}{\frac{\partial^2 F}{\partial x^2}(\gamma + s, \gamma-s, At)
+\frac{\partial^2 F}{\partial y\partial x}(\gamma + s, \gamma-s, At)}\\
&\color{blue}{\pdiff{}{s}\Big[\pdiff{F}{x}(\gamma + s, \gamma-s, At) \Big]}\\
&\hskip0.5in=\color{blue}{\frac{\partial^2 F}{\partial x^2}(\gamma + s, \gamma-s, At)
-\frac{\partial^2 F}{\partial y\partial x}(\gamma + s, \gamma-s, At)}
\end{align*}
replacing \(F\) by \(\pdiff{F}{y}\) in (E1) and (E2) gives
\begin{align*}
&\color{orange}{\pdiff{}{\ga}\Big[\pdiff{F}{y}(\gamma + s, \gamma-s,At)\Big]}\\
&\hskip0.5in=\color{orange}{\frac{\partial^2 F}{\partial x\partial y}(\gamma + s,
\gamma-s, At)
+\frac{\partial^2 F}{\partial y^2}(\gamma + s, \gamma-s,At)}\\
&\color{violet}{\pdiff{}{s}\Big[\pdiff{F}{y}(\gamma + s, \gamma-s, At) \Big]}\\
&\hskip0.5in=\color{violet}{\frac{\partial^2 F}{\partial x\partial y}(\gamma + s,
\gamma-s, At)
-\frac{\partial^2 F}{\partial y^2}(\gamma + s, \gamma-s, At)}
\end{align*}
Consequently
\begin{align*}
\frac{\partial^2G}{\partial\ga^2}(\ga,s,t)
&= \color{red}{\frac{\partial^2 F}{\partial x^2}(\gamma + s, \gamma-s, At)
+\frac{\partial^2 F}{\partial y\partial x}(\gamma + s, \gamma-s, At)}\\
&\phantom{=}+
\color{orange}{\frac{\partial^2 F}{\partial x\partial y}(\gamma + s,
\gamma-s, At)
+\frac{\partial^2 F}{\partial y^2}(\gamma + s, \gamma-s, At)}\\
&= \frac{\partial^2 F}{\partial x^2}(\gamma + s, \gamma-s, At)
+2\frac{\partial^2 F}{\partial y\partial x}(\gamma + s, \gamma-s, At)\\
&\phantom{=} +\frac{\partial^2 F}{\partial y^2}(\gamma + s, \gamma-s, At)
\end{align*}
and
\begin{align*}
\frac{\partial^2G}{\partial s^2}(\ga,s,t)
&= \color{blue}{\frac{\partial^2 F}{\partial x^2}(\gamma + s, \gamma-s, At)
-\frac{\partial^2 F}{\partial y\partial x}(\gamma + s, \gamma-s, At)}\\
&\phantom{=}-\Big[
\color{violet}{\frac{\partial^2 F}{\partial x\partial y}(\gamma + s,
\gamma-s, At)
-\frac{\partial^2 F}{\partial y^2}(\gamma + s, \gamma-s, At)}\Big]\\
&= \frac{\partial^2 F}{\partial x^2}(\gamma + s, \gamma-s, At)
-2\frac{\partial^2 F}{\partial y\partial x}(\gamma + s, \gamma-s, At)\\
&\phantom{=} +\frac{\partial^2 F}{\partial y^2}(\gamma + s, \gamma-s, At)
\end{align*}
So, suppressing the arguments,
\begin{align*}
\frac{\partial^2 G}{\partial \gamma^2}
+ \frac{\partial^2 G}{\partial s^2}
-\frac{\partial G}{\partial t}
&=2\frac{\partial^2 F}{\partial x^2} + 2\frac{\partial^2 F}{\partial y^2}
-A \pdiff{F}{z}
=2\pdiff{F}{z}-A \pdiff{F}{z}
=0
\end{align*}
if \(A=2\text{.}\)