Skip to main content Contents
Prev Up Next \(\require{cancel} \newcommand{\dee}[1]{\mathrm{d}#1}
\newcommand{\half}{ \frac{1}{2} }
\newcommand{\veps}{\varepsilon}
\newcommand{\ds}{\displaystyle}
\newcommand{\ts}{\textstyle}
\newcommand{\es}{ {\varnothing}}
\newcommand{\st}{ {\mbox{ s.t. }} }
\newcommand{\pow}[1]{ \mathcal{P}\left(#1\right) }
\newcommand{\set}[1]{ \left\{#1\right\} }
\newcommand{\lin}{{\text{LIN}}}
\newcommand{\quot}{{\text{QR}}}
\newcommand{\simp}{{\text{SMP}}}
\newcommand{\diff}[2]{ \frac{\mathrm{d}#1}{\mathrm{d}#2}}
\newcommand{\pdiff}[2]{ \frac{\partial #1}{\partial #2}}
\newcommand{\bdiff}[2]{ \frac{\mathrm{d}}{\mathrm{d}#2} \left( #1 \right)}
\newcommand{\ddiff}[3]{ \frac{\mathrm{d}^#1#2}{\mathrm{d}{#3}^#1}}
\newcommand{\difftwo}[2]{ \frac{\mathrm{d^2}#1}{\mathrm{d}{#2}^2}}
\newcommand{\eqf}[1]{{\buildrel \rm #1 \over =}}
\renewcommand{\neg}{ {\sim} }
\newcommand{\limp}{ {\;\Rightarrow\;} }
\newcommand{\nimp}{ {\;\not\Rightarrow\;} }
\newcommand{\liff}{ {\;\Leftrightarrow\;} }
\newcommand{\niff}{ {\;\not\Leftrightarrow\;} }
\newcommand{\De}{\Delta}
\newcommand{\bbbn}{\mathbb{N}}
\newcommand{\bbbr}{\mathbb{R}}
\newcommand{\bbbp}{\mathbb{P}}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\Si}{\Sigma}
\newcommand{\arccsc}{\mathop{\mathrm{arccsc}}}
\newcommand{\arcsec}{\mathop{\mathrm{arcsec}}}
\newcommand{\arccot}{\mathop{\mathrm{arccot}}}
\newcommand{\erf}{\mathop{\mathrm{erf}}}
\newcommand{\smsum}{\mathop{{\ts \sum}}}
\newcommand{\atp}[2]{ \genfrac{}{}{0in}{}{#1}{#2} }
\newcommand{\ave}{\mathrm{ave}}
\newcommand{\llt}{\left \lt }
\newcommand{\rgt}{\right \gt }
\newcommand{\vd}{\mathbf{d}}
\newcommand{\he}{\mathbf{e}}
\newcommand{\vg}{\mathbf{g}}
\newcommand{\vt}{\mathbf{t}}
\newcommand{\vw}{\mathbf{w}}
\def\eqover#1{\ {\buildrel #1 \over =}\ }
\newcommand{\impliesover}[1]{ {\buildrel #1 \over\implies} }
\newcommand{\vr}{\mathbf{r}}
\newcommand{\vR}{\mathbf{R}}
\newcommand{\vs}{\mathbf{s}}
\newcommand{\vv}{\mathbf{v}}
\newcommand{\va}{\mathbf{a}}
\newcommand{\vb}{\mathbf{b}}
\newcommand{\vc}{\mathbf{c}}
\newcommand{\ve}{\mathbf{e}}
\newcommand{\vC}{\mathbf{C}}
\newcommand{\vp}{\mathbf{p}}
\newcommand{\vq}{\mathbf{q}}
\newcommand{\vn}{\mathbf{n}}
\newcommand{\vu}{\mathbf{u}}
\newcommand{\vV}{\mathbf{V}}
\newcommand{\vx}{\mathbf{x}}
\newcommand{\vX}{\mathbf{X}}
\newcommand{\vy}{\mathbf{y}}
\newcommand{\vz}{\mathbf{z}}
\newcommand{\vF}{\mathbf{F}}
\newcommand{\vG}{\mathbf{G}}
\newcommand{\vH}{\mathbf{H}}
\newcommand{\vT}{\mathbf{T}}
\newcommand{\vN}{\mathbf{N}}
\newcommand{\vL}{\mathbf{L}}
\newcommand{\vA}{\mathbf{A}}
\newcommand{\vB}{\mathbf{B}}
\newcommand{\vD}{\mathbf{D}}
\newcommand{\vE}{\mathbf{E}}
\newcommand{\vJ}{\mathbf{J}}
\newcommand{\vZero}{\mathbf{0}}
\newcommand{\vPhi}{\mathbf{\Phi}}
\newcommand{\vOmega}{\mathbf{\Omega}}
\newcommand{\vTheta}{\mathbf{\Theta}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\hi}{\hat{\pmb{\imath}}}
\newcommand{\hj}{\hat{\pmb{\jmath}}}
\newcommand{\hk}{\hat{\mathbf{k}}}
\newcommand{\hn}{\hat{\mathbf{n}}}
\newcommand{\hr}{\hat{\mathbf{r}}}
\newcommand{\hvt}{\hat{\mathbf{t}}}
\newcommand{\hN}{\hat{\mathbf{N}}}
\newcommand{\vth}{{\pmb{\theta}}}
\newcommand{\vTh}{{\pmb{\Theta}}}
\newcommand{\vnabla}{ { \mathchoice{\pmb{\nabla}}
{\pmb{\nabla}}
{\pmb{\scriptstyle\nabla}}
{\pmb{\scriptscriptstyle\nabla}} } }
\newcommand{\ha}[1]{\mathbf{\hat e}^{(#1)}}
\newcommand{\bbbc}{\mathbb{C}}
\newcommand{\Om}{\Omega}
\newcommand{\om}{\omega}
\newcommand{\vOm}{\pmb{\Omega}}
\newcommand{\svOm}{\pmb{\scriptsize\Omega}}
\newcommand{\al}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\de}{\delta}
\newcommand{\ga}{\gamma}
\newcommand{\ka}{\kappa}
\newcommand{\la}{\lambda}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\bbbone}{\mathbb{1}}
\DeclareMathOperator{\sgn}{sgn}
\def\tr{\mathop{\rm tr}}
\newcommand{\Atop}[2]{\genfrac{}{}{0pt}{}{#1}{#2}}
\newcommand{\dblInt}{\iint}
\newcommand{\tripInt}{\iiint}
\newcommand{\Set}[2]{\big\{ \ #1\ \big|\ #2\ \big\}}
\newcommand{\rhof}{{\rho_{\!{\scriptscriptstyle f}}}}
\newcommand{\rhob}{{\rho_{{\scriptscriptstyle b}}}}
\newcommand{\YEaxis}[2]{\draw[help lines] (-#1,0)--(#1,0) node[right]{$x$};\draw[help lines] (0,-#2)--(0,#2) node[above]{$y$};}
\newcommand{\YEaaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$x$};\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YEtaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$t$};\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YEtaaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$t$}; \draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YExcoord}[2]{\draw (#1,.2)--(#1,-.2) node[below]{$#2$};}
\newcommand{\YEycoord}[2]{\draw (.2,#1)--(-.2,#1) node[left]{$#2$};}
\newcommand{\YEnxcoord}[2]{\draw (#1,-.2)--(#1,.2) node[above]{$#2$};}
\newcommand{\YEnycoord}[2]{\draw (-.2,#1)--(.2,#1) node[right]{$#2$};}
\newcommand{\YEstickfig}[3]{
\draw (#1,#2) arc(-90:270:2mm);
\draw (#1,#2)--(#1,#2-.5) (#1-.25,#2-.75)--(#1,#2-.5)--(#1+.25,#2-.75) (#1-.2,#2-.2)--(#1+.2,#2-.2);}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 2 Partial Derivatives
In this chapter we are going to generalize the definition of “derivative” to functions of more than one variable and then we are going to use those derivatives. We will parallel the development in Chapters 1 and 2 of the CLP-1 text. We shall
define limits and continuity of functions of more than one variable (Definitions
2.1.2 and
2.1.3 ) and then
study the properties of limits in more than one dimension (Theorem
2.1.5 ) and then
define derivatives of functions of more than one variable (Definition
2.2.1 ).
We are going to be able to speed things up considerably by recycling what we have already learned in the CLP-1 text.
We start by generalizing the definition of “limit” to functions of more than one variable.